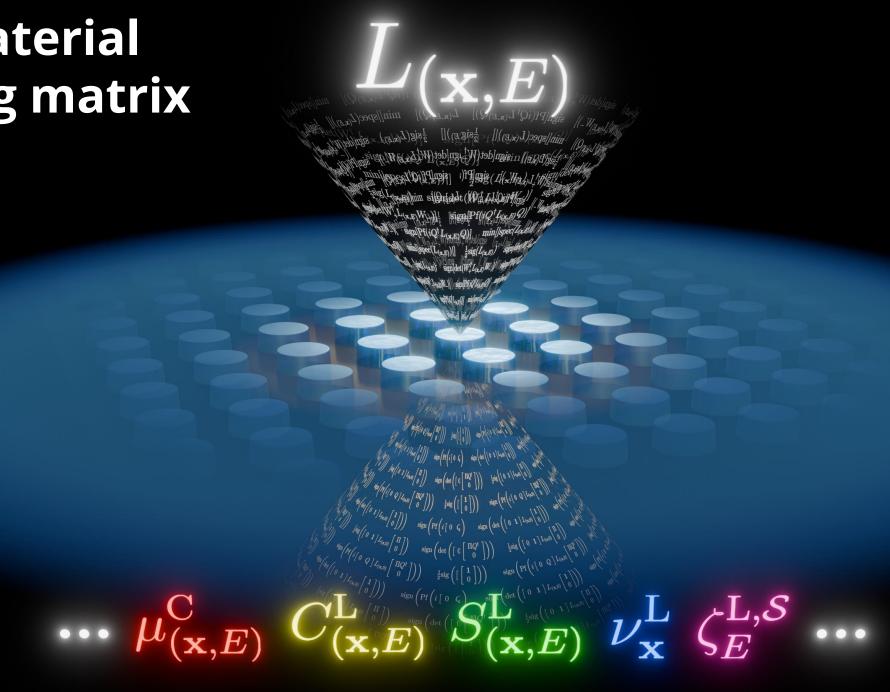
Classifying material topology using matrix homotopy

Alexander Cerjan

Topology and Geometry Beyond Perfect Crystals

Nordita

May 27th, 2025



Acknowledgements

Stephan Wong Sandia / CINT

Ki Young Lee Sandia / CINT

Hyosim Yang Sandia / CINT

José Garcia Univ. New Mexico

Chris Bairnsfather Purdue Univ.

Ajani Roberts Florida A&M Univ.

Terry A. Loring Univ. of New Mexico

Hermann Schulz-Baldes FAU Erlangen

Ralph Kaufmann Purdue Univ.

Vasile Lauric Florida A&M Univ.

Office of Science

Outline

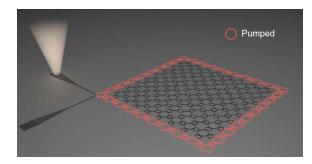
- An operator-based approach to topological physics
 - Uses a framework called the "spectral localizer"
- Emergence of Hofstader's butterfly

- Identifying fragile topology
- Classifying topology in non-linear systems
 - Topological dynamics
- Application directly to Maxwell's equations
 - Incorporating radiative boundaries

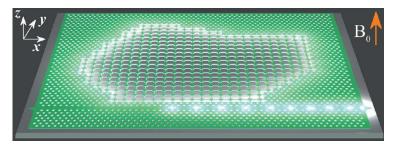
Why make photonics topological?

Topological lasers

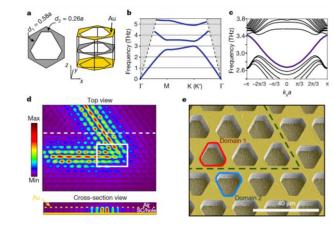
- > Robust against disorder
- > Efficient phase locking



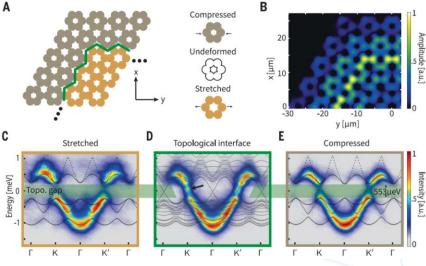
Bandres et al., *Science* **359**, 1231 (2018) Harari et al., *Science* **359**, eaar4003 (2018)



Bahari et al., *Science* **358**, 636 (2017)



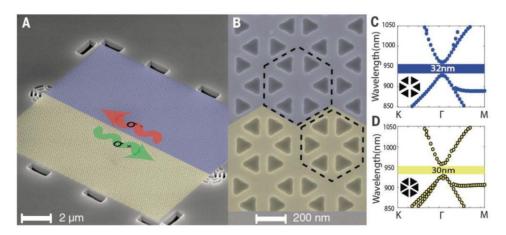
Zeng et al., *Nature* **578**, 246 (2020)



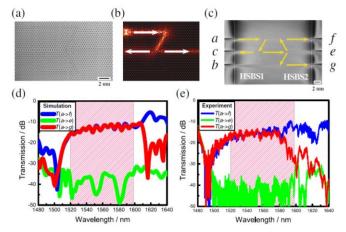
Dikopoltsev et al., *Science* **373**, 1514 (2021)

Why make photonics topological?

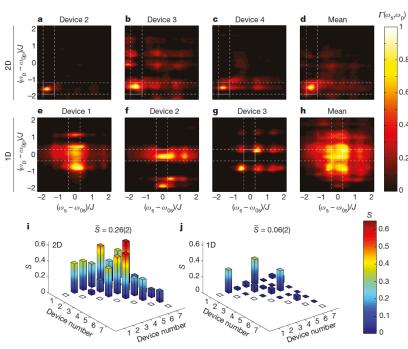
Routing of quantum information



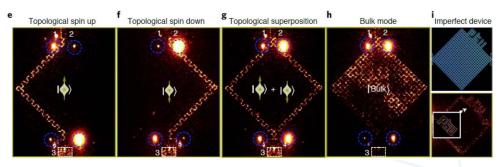
Barik et al., *Science* **359**, 666 (2018)



Chen et al., Phys. Rev. Lett. 126, 230503 (2021)



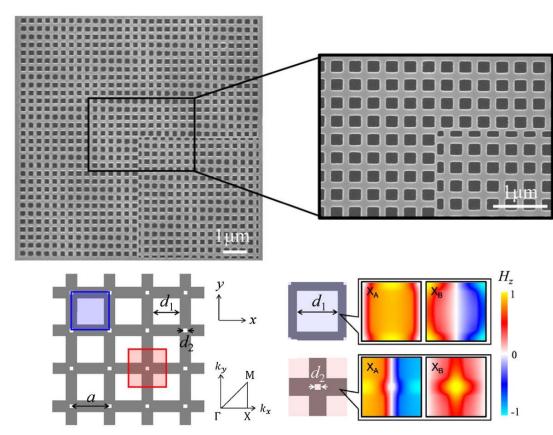
Mittal et al., *Nature* **561**, 502 (2018)



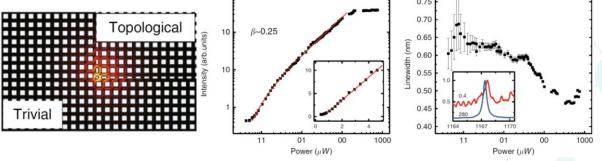
Dai et al., Nat. Photonics 16, 248 (2022)

Why make photonics topological?

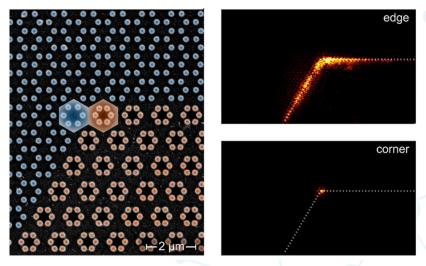
Creating cavities for light-matter interaction



Ota et al., *Optica* **6**, 786 (2019)



Zhang et al., Light Sci. Appl. 9, 109 (2020)



Smirnova et al., *Phys. Rev. Lett.*, **123**, 103901 (2019) Kruk et al., *Nano Lett.* **21**, 4592 (2021)

Challenges with invariants

Where band theory can be applied, band theory is awesome.

Where is band theory not applicable (or not useful)?

1) Material lacks translational symmetry

- Quasicrystals
- Amorphous materials
- Disorder
- Finite size effects

2) Heterostructure lacks a complete or incomplete band gap

- > Band theory is applicable, but...
 - ➤ Not always clear how to calculate the invariant
 - No measure of protection

3) System is non-linear

Localized response breaks translational symmetry

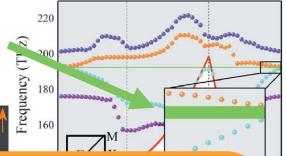
Challenges with invariants in photonics

We'd like nanophotonic Chern insulators

Non-reciprocal edge states

But... it's hard to break time-reversal symmetry

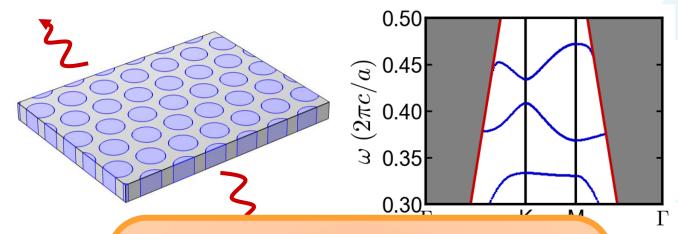
Vanishing bandgap (42 pm)



Can topological phenomena still manifest without a complete band gap?

> Chiral edge resonance?

Related challenge: photonic crystal slabs and metasurfaces radiate out-of-plane



Can resonances and bound states be mixed in formula for topological invariants?

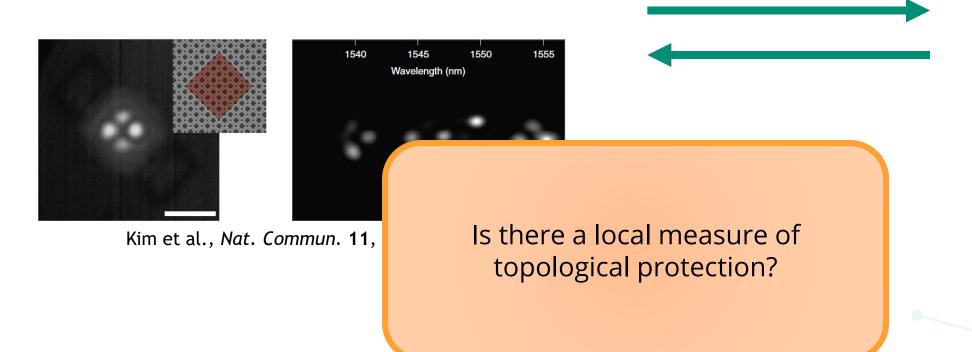
$$C_n = \frac{1}{2\pi} \int_{BZ} \nabla_{\mathbf{k}} \times i \langle \psi_{n\mathbf{k}} | \nabla_{\mathbf{k}} | \psi_{n\mathbf{k}} \rangle d^2 \mathbf{k}$$

Challenges with invariants in photonics

No current theory for finite systems

How close can two topological cavities be, while maintaining protection?

Or how close can two chiral edge states be in a topological Chern system?

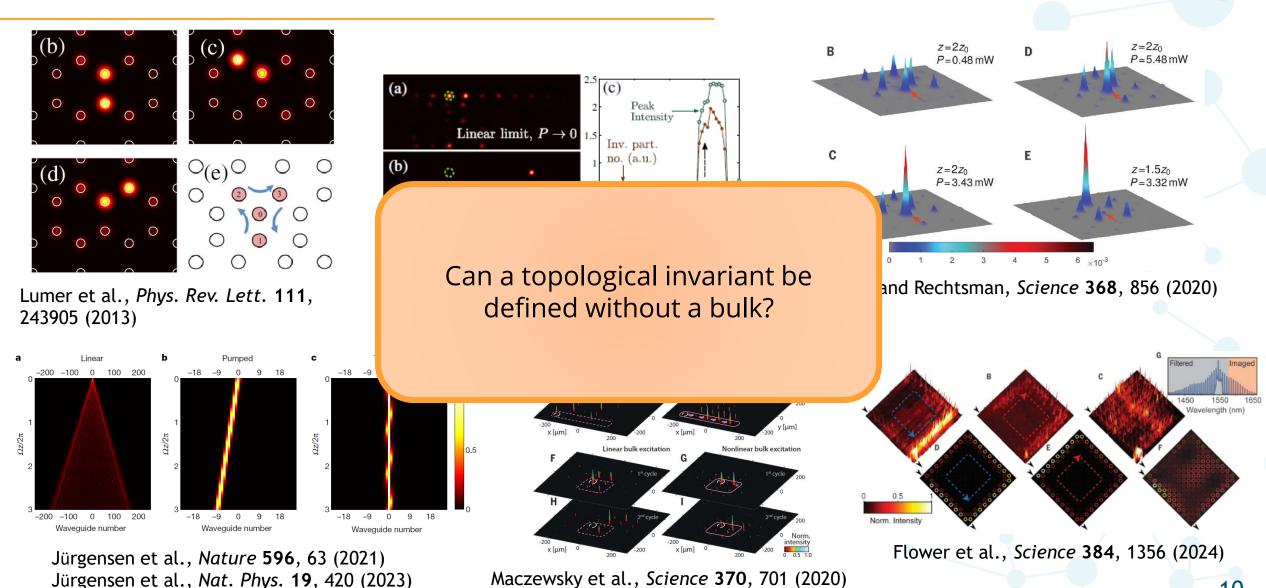


Estimate:

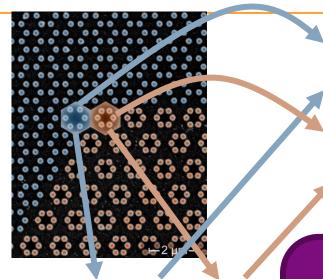
 $e^{-\frac{x}{L}}$

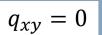
Decay length L set by band gap width ΔE

Photonic non-linearities are local



Local real-space approaches to material topology





$$q_{xy} = 1$$

Kitaev:

$$\nu(P) = 12\pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C} \left(P_{jk} P_{kl} P_{lj} - P_{jl} P_{lk} P_{kj} \right)$$

Kitaev, Ann. Phys. **321**, 2 (2006) Mitchell et al., Nat. Phys. **14**, 380 (2018)

Projectors are difficult to calculate for real systems

Neither framework has a local measure of topological protection.

$$(\mathbf{r}',\mathbf{r}) - \tilde{Y}(\mathbf{r},\mathbf{r}')\tilde{X}(\mathbf{r}',\mathbf{r})]d\mathbf{r}'$$

$$\tilde{X}(\mathbf{r},\mathbf{r}') = \int P(\mathbf{r},\mathbf{r}'')x''P(\mathbf{r}'',\mathbf{r}')d\mathbf{r}''$$

Wu and Hu, *Phys. Rev. Lett.* **114**, 223901 (2015)

 $a_0/R = 2.9$

Kruk et al., Nano Lett. 21, 4592 (2021)

 $a_0/R = 3.125$

Frequency [c/a₀]

Bianco and Resta, *Phys. Rev. B* **84**, 241106(R) (2011)

Implications of topology on the Wannier basis

Systems with non-trivial Chern numbers **DO NOT** possess a complete localized Wannier basis.

$$C_n = \frac{1}{2\pi} \int_{BZ} \left(\frac{\partial A_y^n}{\partial k_x} - \frac{\partial A_x^n}{\partial k_y} \right) d^2 \mathbf{k} \neq 0 \qquad \Longleftrightarrow \qquad b$$

This is an *if and only if* statement

No complete localized Wannier basis necessitates a non-trivial Chern number.

This generalizes to many other classes of topology

Brouder et al., *Phys. Rev. Lett.* **98**, 046402 (2007)

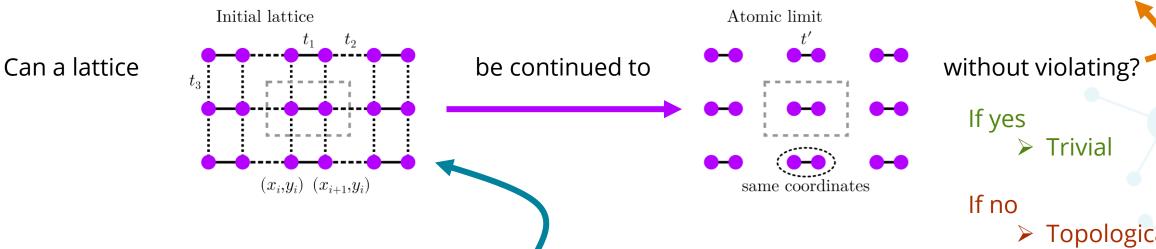
Example: No localized Wannier basis that respects time-reversal symmetry \Leftrightarrow non-trivial Kane-Mele invariant (Quantum spin Hall)

Soluyanov and Vanderbilt, *Phys. Rev. B* **83**, 035108 (2011)

Topology as "Wannierizability"

Instead of an invariant, "Does the system possess a complete Wannier basis?"

Band gap stays open Symmetries are preserved



Topological

In other words, "Can the system be permuted to an atomic limit?"

(and if multiple inequivalent limits exist, which one?)

- Can answer using a lattice's band structure
- > Topological quantum chemistry

Kitaev, AIP Conference Proceedings 1134, 22 (2009) Hastings and Loring, Ann. Phys. 326 1699 (2011) Taherinejad et al., *Phys. Rev. B* **89**, 115102 (2014) Kruthoff et al., *Phys. Rev. X* **7**, 041069 (2017) Po et al., Nat. Commun. 8, 50 (2017)

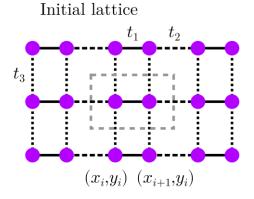
Topology as an atomic limit

Instead of an invariant, "Can the system be permuted to an atomic limit?"

Band gap stays open

Symmetries are preserved

Can a lattice



$$H = \begin{bmatrix} \ddots & -t_2 & -t_3 \\ -t_2 & \varepsilon & -t_1 & -t_3 \\ -t_1 & \varepsilon & -t_2 & -t_3 \\ -t_3 & -t_2 & \varepsilon & -t_1 \\ -t_3 & -t_1 & \varepsilon & -t_2 \\ -t_3 & -t_2 & \ddots \end{bmatrix}$$

Can the operators

be continued to



same coordinates

Atomic limit

be continued to

without violating?

If yes ➤ Trivial

If no

> Topological

without violating similar restrictions?

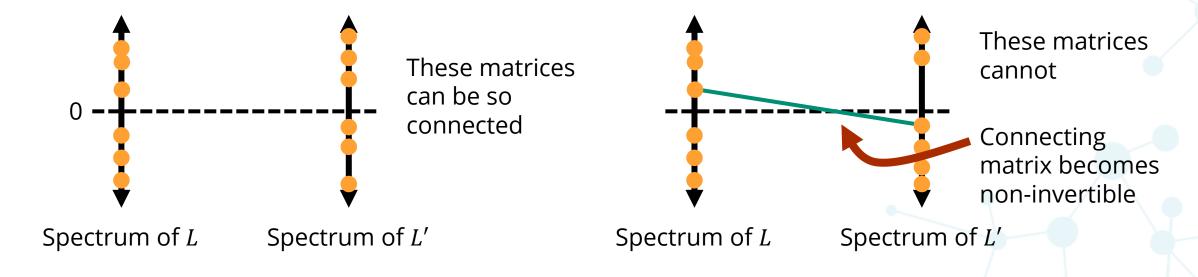
Topology from operators

Instead of an invariant, "Can the system be permuted to an atomic limit?"

"Can the system's operators be permuted to be commuting?"

Theorem: Two invertible, Hermitian matrices L and L' can be connected by a path of invertible Hermitian matrices if and only if sig(L) = sig(L')

• sig(L) is *signature*, the number of positive eigenvalues minus the number of negative ones.



Topology from operators

Theorem: Two invertible, Hermitian matrices L and L' can be connected by a path of invertible Hermitian matrices if and only if sig(L) = sig(L')

• sig(L) is *signature*, the number of positive eigenvalues minus the number of negative ones.

Theorem (Choi, 1988): If R and S are n-by-n matrices with RS = SR, then

$$\operatorname{sig}\begin{bmatrix} R & S \\ S^{\dagger} & -R \end{bmatrix} = 0$$

How do these results help?

$$ightharpoonup R o (H - EI)$$

$$ightharpoonup S
ightharpoonup \kappa(X-xI) - i\kappa(Y-yI)$$

And the requirement that RS = SR becomes

$$[H - EI, X - xI] = 0$$
 and $[H - EI, Y - yI] = 0$

Construct the 2D spectral localizer:

$$L_{(x,y,E)}(X,Y,H) = \begin{bmatrix} H - EI & \kappa(X - xI) - i\kappa(Y - yI) \\ \kappa(X - xI) + i\kappa(Y - yI) & -(H - EI) \end{bmatrix}$$

If $sig(L_{(x,y,E)}(X,Y,H)) = 0$ for a given E, x, y, then the system can be continued to the atomic limit at that point.

Topology from operators

Intuitively... what's going on?

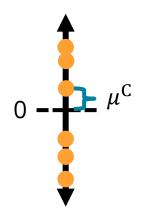
$$L_{(x,y,E)}(X,Y,H) = \kappa(X - xI) \otimes \sigma_x + \kappa(Y - yI) \otimes \sigma_y + (H - EI) \otimes \sigma_z$$

- *H* and *X*, *Y* contain "orthogonal" information
- Pauli matrices (+ identity) form a basis for 2by-2 Hermitian matrices.
- ➤ Combination preserves the independent information in *H* and *X*, *Y* while forming a single matrix.

Measure of protection (i.e., a "local gap")

$$\mu_{(x_1,...,x_d,E)}^{C} = \sigma_{\min}[L_{(x_1,...,x_d,E)}(X_1,...,X_d,H)]$$

(smallest eigenvalue of $L_{(x_1,...,x_d,E)}$)



Rigorously,

 $\|\delta H\| < \mu^C$

cannot change local topology

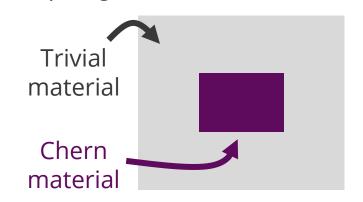
(Weyl's inequality)

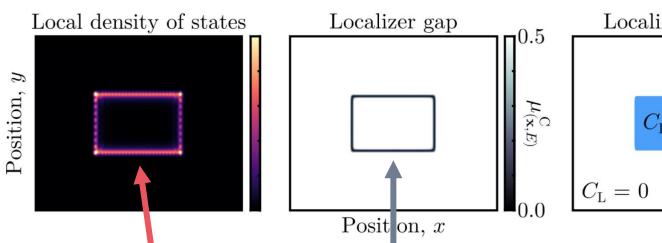
Spectrum of *L*

Loring, Ann. Phys. **356**, 383 (2015) Loring and Schulz-Baldes, New York J. Math. **23**, 1111 (2017) Loring and Schulz-Baldes, J. Noncommut. Geom. **14**, 1 (2020)

What does this look like?

Topological heterostructure





Localizer index $C_{
m L}=1$ $C_{
m L}=0$

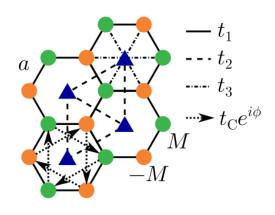
Connection between chiral edge states and local gap closing?

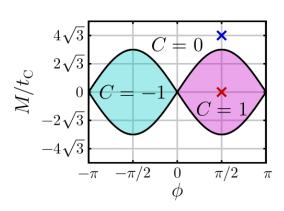
> YES!!!

- ➤ Built-in bulk-boundary correspondence
- > Gap closings *necessitate* nearby states of the Hamiltonian

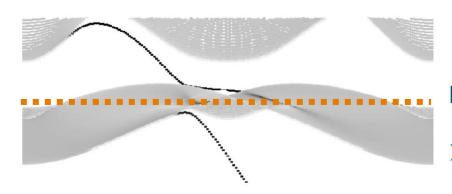
Topology for a gapless system?

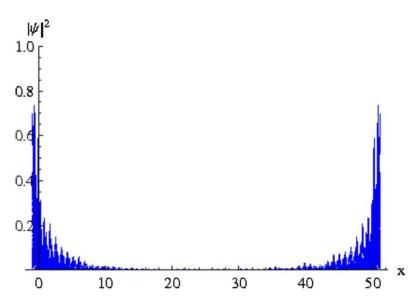
"metallized Haldane model"





D. Hsieh et al., *Science* **323**, 919 (2009) Bergman and Refael, *Phys. Rev. B* **82**, 195417 (2010) Junck et al., *Phys. Rev. B* **87**, 235114 (2013)





Found boundary-localized states

- Resistant to hybridization
- > Robust against mild disorder

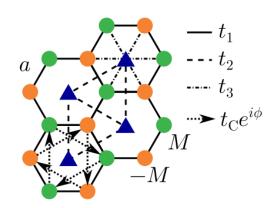
Can such systems be classified?

- What if Fermi energy is here?
- Measure of topological protection without a band gap?

Chern metal

Ribbon band structure

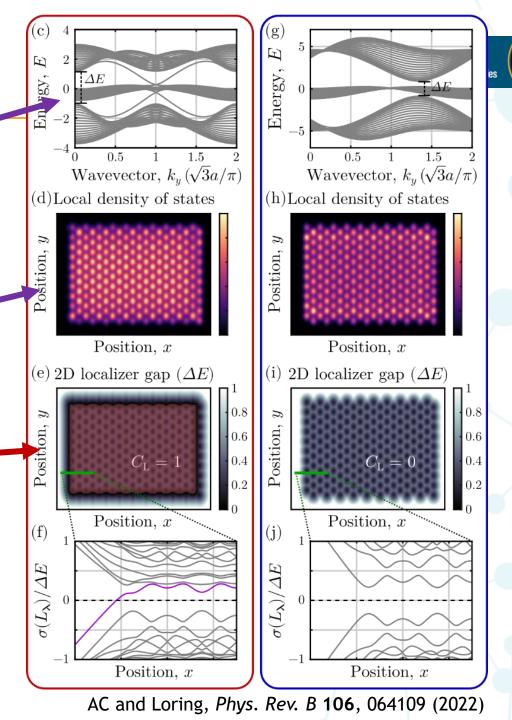
"metallized Haldane model"



No qualitative difference in LDOS at E=0

Even though $H - E_F I$ has eigenvalues at 0

 $L_{(x,y,E)}$ can still be gapped!

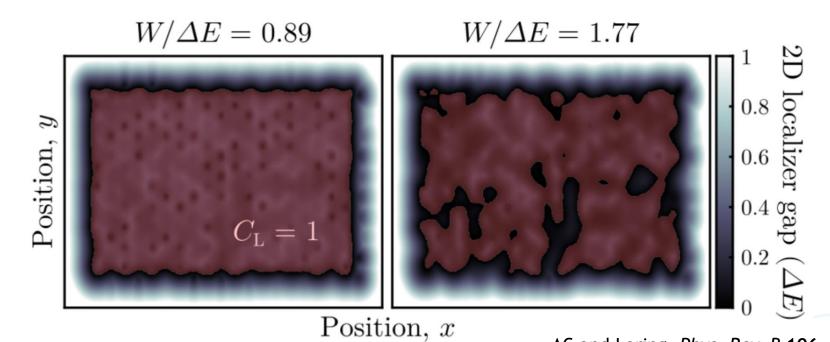


Bergman and Refael, *Phys. Rev. B* **82**, 195417 (2010) Junck et al., *Phys. Rev. B* **87**, 235114 (2013)

Disordered Chern metal

By retaining position information from *X*, *Y*:

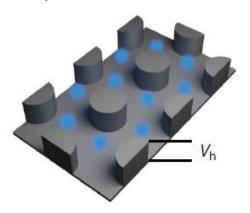
- ➤ Identify local gaps
- Classify local topology

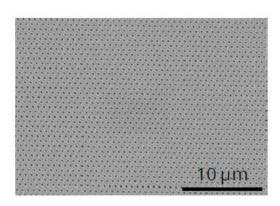


Application to 2D electron gasses and artificial graphene

Artificial Graphene –

quantum well with added potential V_h



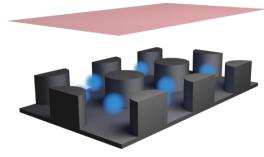


AlSb/InAs/AlSb

$$H = \frac{1}{2m^*} \left(-i\hbar \nabla + e\mathbf{A}(\mathbf{x}) \right)^2 + V(\mathbf{x}) - \frac{\mu_B g}{\hbar} s_z B$$

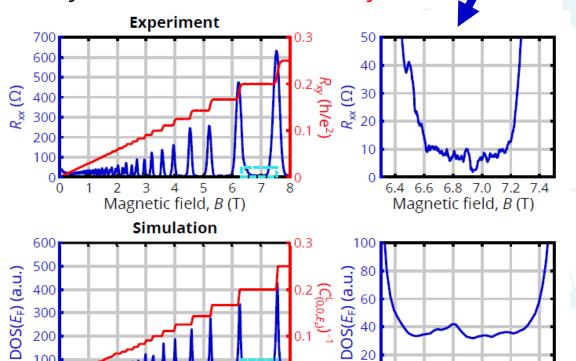
 $E_F \approx 4V_h$

System mostly behaves as 2D electron gasIQHE



Park et al., *Nano Lett.* **8**, 2920 (2008) Wunsch et al., *New J. Phys.* **10**, 103027 (2008) Added potential closes the Landau level gaps

Nevertheless, spectral localizer yields correct Hall resistivity



Spataru, Pan, and AC, Phys. Rev. Lett. 134, 126601 (2025)

3

Magnetic field, B (T)

6.4 6.6 6.8 7.0 7.2 7.4

Magnetic field, B (T)

Topological origins of pinned states

$$L_{(x,y,E)}(X,Y,H)$$

$$= \kappa(X - xI) \otimes \sigma_x + \kappa(Y - yI) \otimes \sigma_y + (H - EI) \otimes \sigma_z$$

To probe system-level phenomena characterized by length L

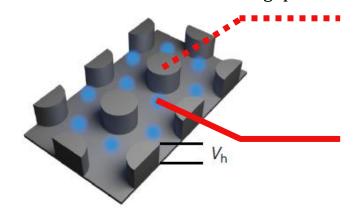
$$\kappa \sim \frac{E_{\rm gap}}{L}$$

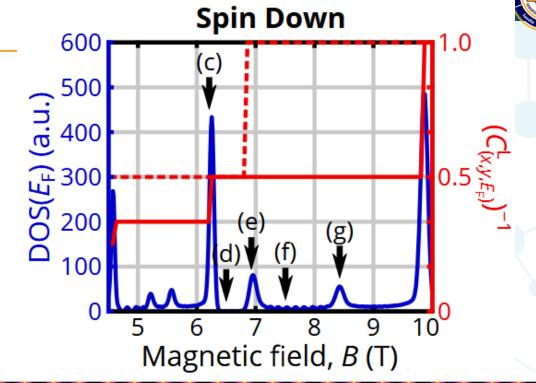
To probe antidot phenomena with diameter D

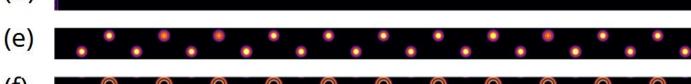
$$\kappa \sim \frac{E_{\rm gap}}{D}$$

trading spectral resolution for spatial resolution

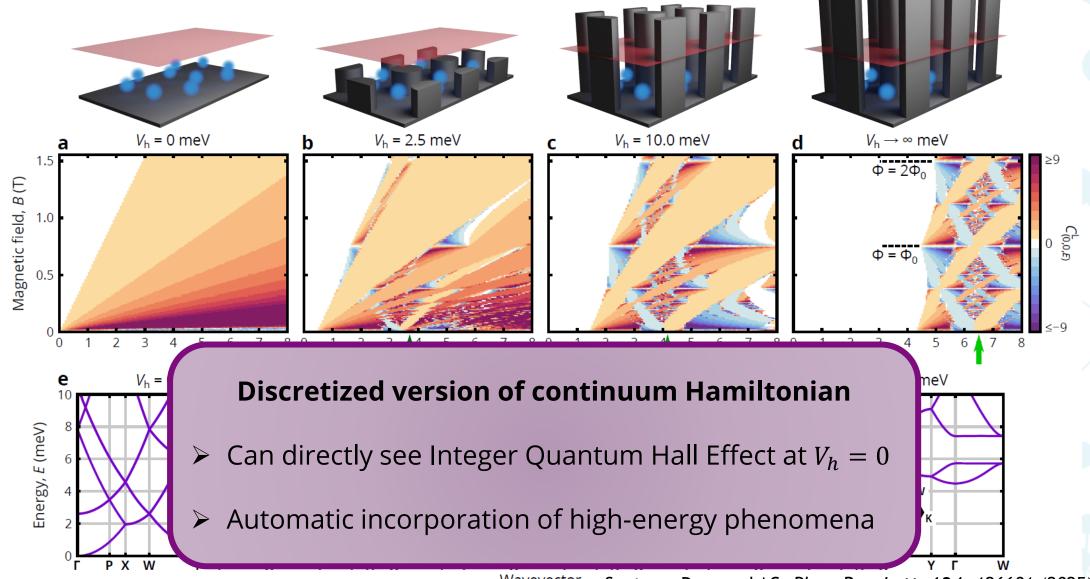
 \rightarrow requires a larger $E_{\rm gap}$







Emergence of Hofstader's butterfly as potential is turned on



Classifying fragile topology via matrix homotopy

Consider a finite 2D system with open boundaries

Hamiltonian HPosition operators X,Y $H,X,Y \in \mathbf{M}_{2n}(\mathbb{C})$

Fragile topology can be protected by (C_2T) -symmetry

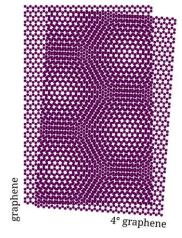
 C_2 – 180° rotation about out-of-plane axis \mathcal{T} – Bosonic time-reversal symmetry, $\mathcal{T}^2 = I$

For a system with this symmetry

$$(C_2 \mathcal{T})^{-1} H(C_2 \mathcal{T}) = H$$

$$(C_2 \mathcal{T})^{-1} X(C_2 \mathcal{T}) = -X$$

$$(C_2 \mathcal{T})^{-1} Y(C_2 \mathcal{T}) = -Y$$



Define

$$M^{\rho} = (C_2 \mathcal{T})^{-1} M^{\dagger} (C_2 \mathcal{T})$$

after simplifying

$$M^{\rho} = C_2 M^{\mathsf{T}} C_2$$

 ρ defines a real structure for the C*-algebra formed by $\mathbf{M}_{2n}(\mathbb{C})$

$$H^{\rho} = H$$

$$X^{\rho} = -X$$

$$Y^{\rho} = -Y$$

Classifying fragile topology via matrix homotopy

Define

$$M^{\rho} = (C_2 \mathcal{T})^{-1} M^{\dagger} (C_2 \mathcal{T})$$

after simplifying

$$M^{\rho} = C_2 M^{\mathsf{T}} C_2$$

 ρ defines a real structure for the C*-algebra formed by $\mathbf{M}_{2n}(\mathbb{C})$

$$H^{\rho} = H$$

$$X^{\rho} = -X$$

$$Y^{\rho} = -Y$$

In some basis, $\rho \to T$

Can directly verify that the unitary

$$W = \frac{1}{\sqrt{2}}(C_2 + iI)$$

yields

$$WM^{\rho}W^{\dagger} = (WMW^{\dagger})^{\mathsf{T}}$$

And thus

$$(WHW^{\dagger})^{\mathsf{T}} = WHW^{\dagger}$$

$$(WXW^{\dagger})^{\mathsf{T}} = -WXW^{\dagger}$$

$$(WYW^{\dagger})^{\mathsf{T}} = -WYW^{\dagger}$$
skew symmetric

Homotopy invariant of skew symmetric matrices

$$T = \begin{bmatrix} 0 & \alpha_1 \\ -\alpha_1 & 0 \\ & & 0 & \alpha_2 \\ & & -\alpha_2 & 0 \\ & & & \ddots & \\ & & & & \ddots & \\ & & & & & 0 & \alpha_n \\ & & & & & -\alpha_n & 0 \end{bmatrix}$$

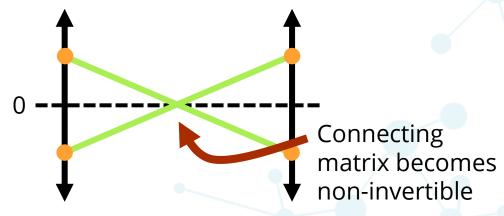
Skew symmetric — $T^{T} = -T$ Well-defined sign

Pfaffian — $Pf[T] = \alpha_1 \alpha_2 \cdots \alpha_n$

Determinant — $det[T] = Pf[T]^2$

If we want to change sign[Pf[T]] while preserving $T^{T} = -T$

$$\begin{bmatrix} \ddots & & & & \\ & 0 & \alpha_j & & \\ & -\alpha_j & 0 & & \\ & & \ddots \end{bmatrix} \rightarrow \begin{bmatrix} \ddots & & & \\ & 0 & -\alpha_j & & \\ & \alpha_j & 0 & & \\ & & \ddots & \end{bmatrix}$$



Classifying fragile topology via matrix homotopy

Form a (nearly) skew-symmetric spectral localizer

$$L_{(x,y,E)}(WXW^{\dagger},WYW^{\dagger},WHW^{\dagger}) = \kappa(WXW^{\dagger} - x) \otimes \sigma_{x} + \kappa(WYW^{\dagger} - y) \otimes \sigma_{z} + (WHW^{\dagger} - E) \otimes \sigma_{y}$$

$$= \begin{bmatrix} \kappa(WYW^{\dagger} - y) & \kappa(WXW^{\dagger} - x) - i(WHW^{\dagger} - E) \\ \kappa(WXW^{\dagger} - x) + i(WHW^{\dagger} - E) & -\kappa(WYW^{\dagger} - y) \end{bmatrix}$$

At (x, y) = (0,0), this spectral localizer is skew-symmetric

So can define the energy-resolved invariant

$$\zeta_E(X, Y, H) = \text{sign}\left[\text{Pf}\left[L_{(x,y,E)}(WXW^{\dagger}, WYW^{\dagger}, WHW^{\dagger})\right]\right]$$

$$\zeta_E \in \{-1,1\} \cong \mathbb{Z}_2$$

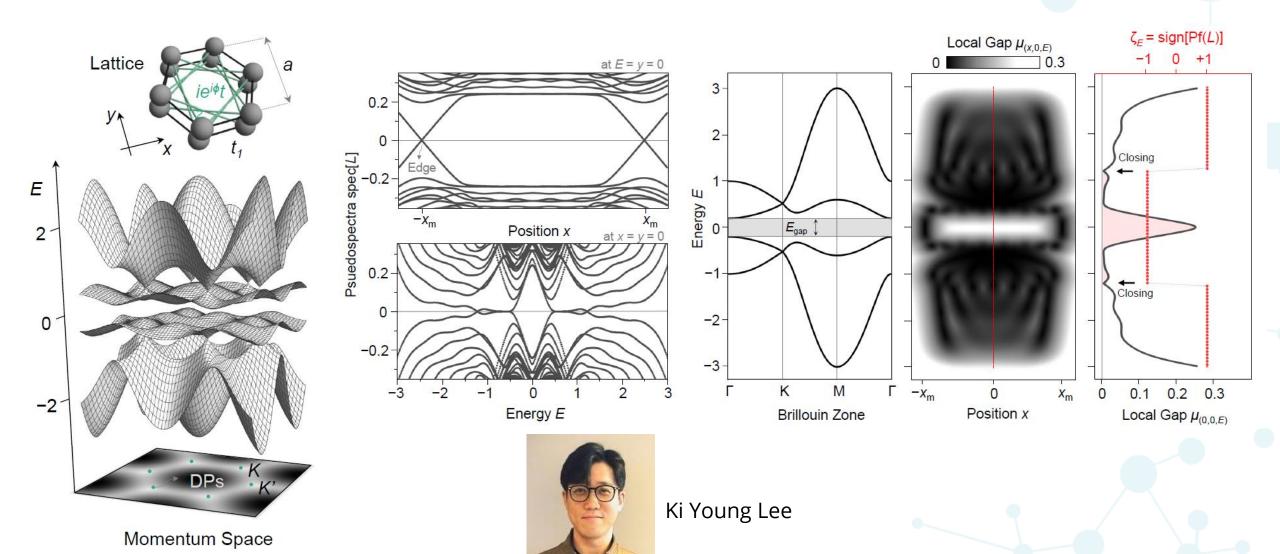
as expected

Invariant distinguishes systems based on what atomic limits they can be path continued to

Same definition of topological protection

$$\mu_{(x_1,...,x_d,E)}^{C} = \sigma_{\min}[L_{(x_1,...,x_d,E)}(X_1,...,X_d,H)]$$

Classifying fragile topology via matrix homotopy



General framework for non-linear topology

Working in real-space

> Can handle spatial non-linearities for free

$$L_{(x,y,E)}(X,Y,H_{NL}(\mathbf{\psi}))$$

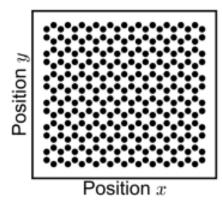
$$= \begin{bmatrix} H_{NL}(\mathbf{\psi}) - EI & \kappa(X-xI) - i\kappa(Y-yI) \\ \kappa(X-xI) + i\kappa(Y-yI) & -(H_{NL}(\mathbf{\psi}) - EI) \end{bmatrix}$$

On-site non-linearity

$$H_{\rm NL}(\mathbf{\psi}) = H_0 + g|\mathbf{\psi}|^2$$

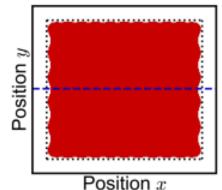
Stephan Wong

Topological non-trivial lattice

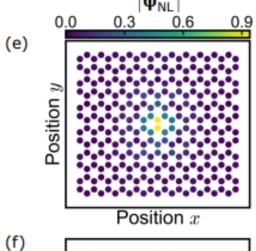


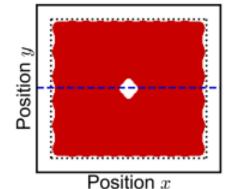
(a)

(b)



Topological non-trivial nonlinear mode





30

Topological dynamics

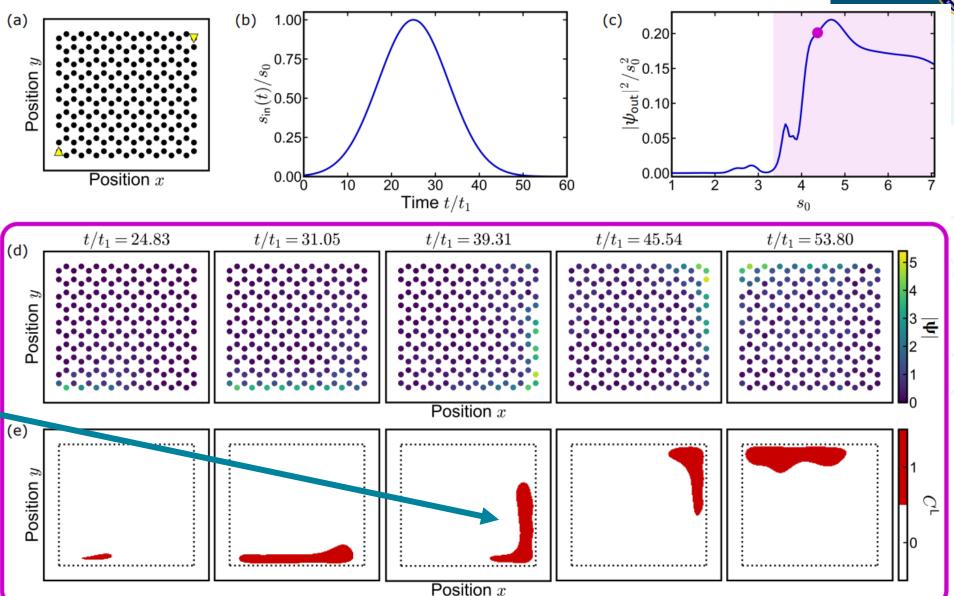
Sandia National Laboratories

Previously predicted and observed edge solitons

Leykam and Chong, *Phys. Rev. Lett.* **117**, 143901 (2016)

Mukherjee and Rechtsman, *Phys. Rev. X* 11, 041057 (2021)

Non-linear topological dynamics!

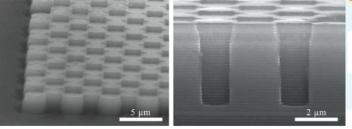


Reconfigurable topology in exciton-polariton lattices

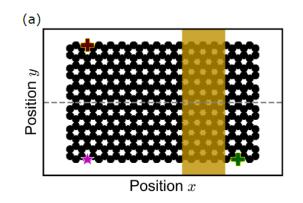
Driven-dissipative exciton-polariton systems

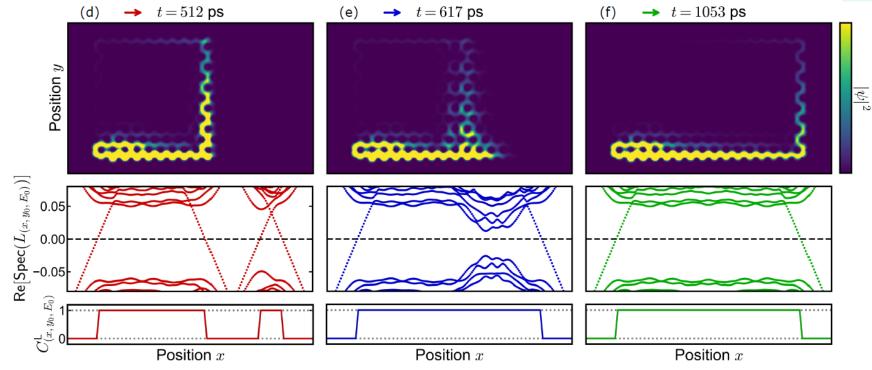
$$i\hbar \frac{\partial}{\partial t} \psi = H_0 \psi - i\hbar \left(\frac{\gamma_c}{2}\right) \psi + g_c |\psi|^2 \psi + \left(g_r + i\hbar \frac{R}{2}\right) n_r \psi + S_{probe}$$

$$\frac{\partial}{\partial t} n_r = -(\gamma_r + R|\psi|^2) n_r + S_{pump}$$



Parameters from Klembt et al., *Nature* **562**, 552 (2018)





Reformulating Maxwell's equations

Linear, local media, allow for dispersion

$$\nabla \times \mathbf{E}(\mathbf{x}) = i\omega \bar{\mu}(\mathbf{x}, \omega) \mathbf{H}(\mathbf{x})$$

$$\nabla \times \mathbf{H}(\mathbf{x}) = -i\omega \bar{\varepsilon}(\mathbf{x}, \omega) \mathbf{E}(\mathbf{x})$$

$$\nabla \cdot [\bar{\varepsilon}(\mathbf{x}, \omega) \mathbf{E}(\mathbf{x})] = 0$$

$$\nabla \cdot [\bar{\mu}(\mathbf{x}, \omega) \mathbf{H}(\mathbf{x})] = 0$$

For non-zero frequencies, can recast as:

$$\left[\begin{pmatrix} & -i\nabla \times \\ i\nabla \times & & \\ \end{pmatrix} - \omega \begin{pmatrix} \bar{\mu}(\mathbf{x}, \omega) & \\ & \bar{\varepsilon}(\mathbf{x}, \omega) \end{pmatrix} \right] \begin{pmatrix} \mathbf{H}(\mathbf{x}) \\ \mathbf{E}(\mathbf{x}) \end{pmatrix} = 0$$

The divergence equations can be recovered using $\nabla \cdot \nabla \times \mathbf{F}(\mathbf{x}) = 0$ for any vector field $\mathbf{F}(\mathbf{x})$, for any $\omega \neq 0$

This yields a "self-consistent" generalized eigenvalue equation:

$$W\psi(\mathbf{x}) = \omega M(\mathbf{x}, \omega)\psi(\mathbf{x})$$

$$W = \begin{pmatrix} -i\nabla \times \\ i\nabla \times \end{pmatrix} \qquad \psi(\mathbf{x}) = \begin{pmatrix} \mathbf{H}(\mathbf{x}) \\ \mathbf{E}(\mathbf{x}) \end{pmatrix}$$

$$M(\mathbf{x},\omega) = \begin{pmatrix} \bar{\mu}(\mathbf{x},\omega) & \\ & \bar{\varepsilon}(\mathbf{x},\omega) \end{pmatrix}$$

And finally an ordinary eigenvalue equation:

$$H\mathbf{\phi}(\mathbf{x}) = \omega\mathbf{\phi}(\mathbf{x})$$

$$H = M^{-1/2}(\mathbf{x}, \omega)WM^{-1/2}(\mathbf{x}, \omega)$$

$$\mathbf{\phi}(\mathbf{x}) = M^{1/2}(\mathbf{x}, \omega)\mathbf{\psi}(\mathbf{x})$$

Reformulating Maxwell's equations

By discretizing the system

- Yee grid
- > Finite-element method

Obtain a lattice, with effective Hamiltonian

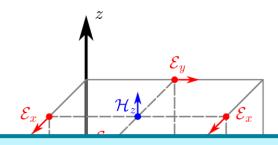
$$H_{\text{eff}} = M^{-1/2}(\mathbf{x}, \omega)WM^{-1/2}(\mathbf{x}, \omega)$$

And the position operators,

are diagonal matrices of the lattice vertex coordinates.

Directly insert into spectral localizer:

$$L_{(x,y,\omega)}(X,Y,H) = \begin{bmatrix} H - \omega I & \kappa(X - xI) - i\kappa(Y - yI) \\ \kappa(X - xI) + i\kappa(Y - yI) & -(H - \omega I) \end{bmatrix}$$



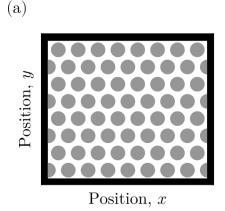
- This reformulation maintains symmetries
 - > Can prove that $M\mathcal{U} = \pm \mathcal{U}M \implies M^{-1/2}\mathcal{U} = \pm \mathcal{U}M^{-1/2}$

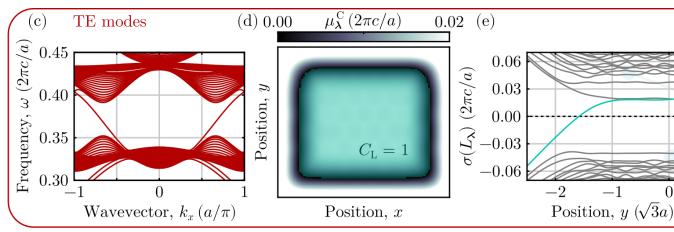
- Numerically, it is impossible to do this for local markers involving projectors
 - Projectors make sparse matrices dense.

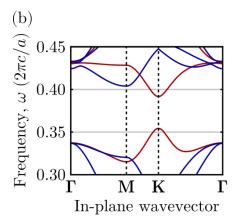
The Haldane and Raghu photonic Chern insulator

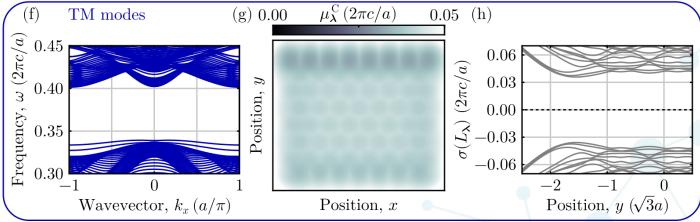
$$L_{(x,y,\omega)}(X,Y,H) = \begin{bmatrix} H - \omega I & \kappa(X - xI) - i\kappa(Y - yI) \\ \kappa(X - xI) + i\kappa(Y - yI) & -(H - \omega I) \end{bmatrix}$$

2D photonic crystal of dielectric pillars in gyro-electric air

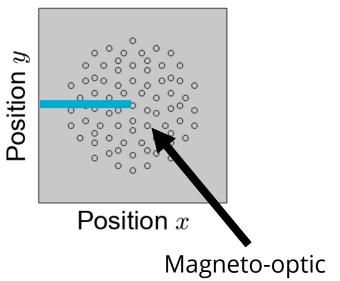


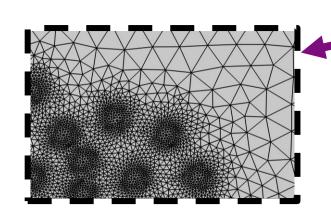


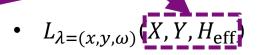




Photonic Chern Quasicrystal

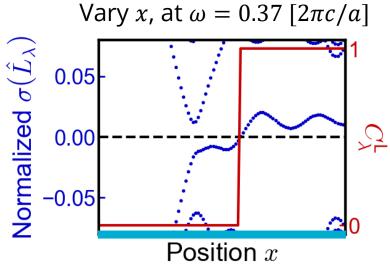


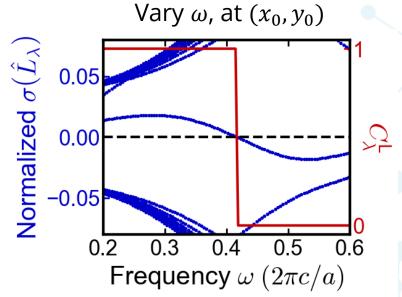




• $C_{\lambda}^{L}(x, y, \omega) = \frac{1}{2} \operatorname{sig} \left[L_{(x, y, \omega)}(X, Y, H_{eff}) \right]$

Stephan Wong



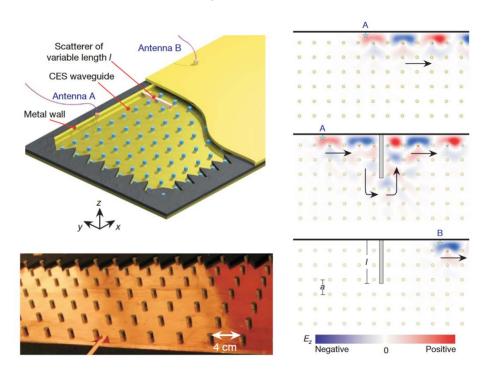


Wong, Loring, and AC, npj Nanophoton. 1, 19 (2024)

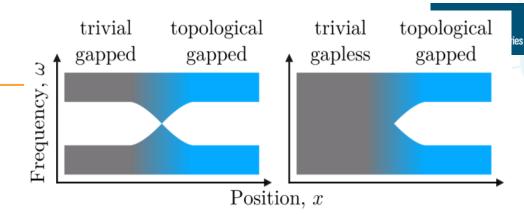
Radiative environments

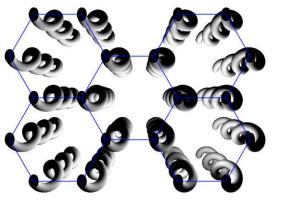
Realized in microwaves

- Surrounded by a metal
 - > Acts as perfect electric conductor



Wang et. al., *Nature* (2009)





10 µm

Rechtsman et al., *Nature* (2013)

Hafezi et al., Nat. Photon. (2013)

Later realizations in other platforms

- Surrounded by air
 - Subject to bending loss

i.e., radiation

Any topological protection against environment perturbations?

Radiative environments

For Chern number, non-Hermitian generalization is known

$$L_{(x,y,\omega)}(X,Y,H) = \begin{bmatrix} H - \omega I & \kappa(X - xI) - i\kappa(Y - yI) \\ \kappa(X - xI) + i\kappa(Y - yI) & -(H - \omega)^{\dagger} \end{bmatrix}$$

Yielding

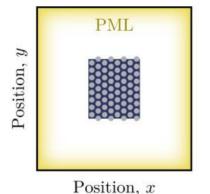
Non-zero local gap!

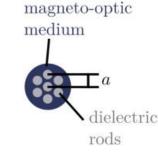
> Topological protection against perturbations in the environment!

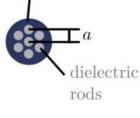
LDOS shows a chiral edge resonance

Spectro Vocalizer proves existence of shiral edge resonance

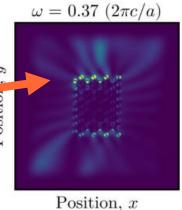
- > Resonance... not state.
- Couples to vacuum.



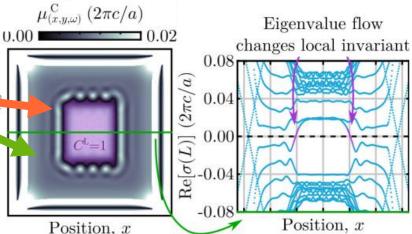




 $-\text{TE }\nu = 0.0$ In-plane wavevector

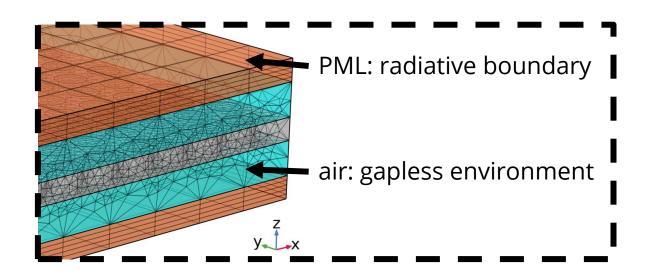


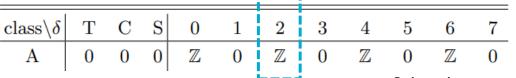
Local density of states



Kahlil Y. Dixon

Topology in Photonic Crystal Slabs

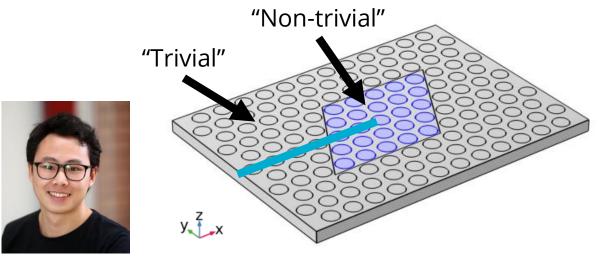


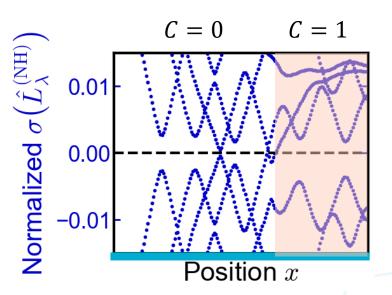


Schnyder et. al., Phys. Rev. B 78, 195125 (2008)

Topological edge states in slab with 2D strong topological invariant

- ➤ Disregard z-direction: $(x, y, z) \rightarrow (x, y)$ (still have all vertices, just "forgetting" about z)
- \triangleright Look at the change of topology in the (x, y)-plane





Stephan Wong

Operators don't care about physical meaning

In 1D class AllI (e.g., SSH model), chiral symmetry protects states at E=0

$$H\Pi = -\Pi H$$
, $X\Pi = \Pi X$, $\Pi^2 = I$, $\Pi = \Pi^{\dagger}$

Local winding number:

$$v_{(x,0)} = \frac{1}{2} \operatorname{sig}[(\kappa(X - xI) + iH)\Pi] \in \mathbb{Z}$$

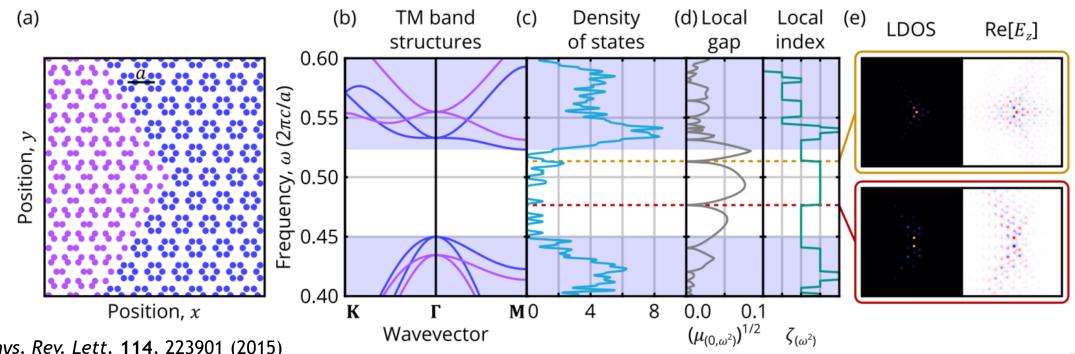
But crystalline symmetry can yield similar commutation relations

$$HS = SH$$
, $XS = -SX$, $S^2 = I$, $S = S^{\dagger}$

Local "crystalline winding number," protects states at x = 0

$$\zeta_{(0,E)}^{\mathcal{S}} = \frac{1}{2} \operatorname{sig}[(H - EI + i\kappa X)\mathcal{S}] \in \mathbb{Z}$$

Local markers for crystalline topology



Wu, Hu, *Phys. Rev. Lett.* **114**, 223901 (2015) Smirnova et al., *Phys. Rev. Lett.*, **123**, 103901 (2019) Kruk et al., *Nano Lett.* **21**, 4592 (2021)

Local "reflection winding number," protects states at y = 0

$$\zeta_{(0,\omega^2)}^{\mathcal{R}_y} = \frac{1}{2} \operatorname{sig}[(H - \omega I + i\kappa Y)\mathcal{R}_y] \in \mathbb{Z}$$

A "mathematical SEM"

If $\mu_{(\mathbf{x},E)}^{\mathbf{C}}$ is small – system has a nearby state

If $\mu_{(\mathbf{x},E)}^{\mathbf{C}}$ is large – the local topological phase is robust

- > Can be classified with
 - Chern number $C_{(\mathbf{x},E)}^{\mathbf{L}}$
 - Quantum spin Hall $S_{(\mathbf{x},E)}^{\mathbf{L}}$
 - Winding number $\nu_{\mathbf{x}}^{\mathrm{L}}$
 - Crystalline topology $\zeta_E^{\mathrm{L,S}}$
 - etc...

