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FIG. S1. Probing topology of non-resonantly pumped
systems using the spectral localizer framework. (a)
Potential landscape V (x) of the polariton system arranged in
a honeycomb lattice. The black and white regions correspond
to potentials of V = 6 meV and V = 0 meV, respectively.
(b) Eigenvalues of the spectral localizer Re

[
Spec

(
L(x,y0,E0)

)]
and the local Chern number CL

(x,y0,E0)
along the dashed line

in (a) and at E0 = 0.35 meV. (c) Eigenvalues of the spectral
localizer Re

[
Spec

(
L(x0,y0,E)

)]
and the local Chern number

CL
(x0,y0,E) along the energy axis and at the position of green

star in (a). (d)-(f) Same as (a)-(c) but with an yellow over-
lay on the lattice in (d), depicting the blueshift. Parameter
values: lattice constant is a = 2.95 µm (center-to-center dis-
tance is 1.7 µm), radius of the rods is 1 µm; m = 1.3×10−4m0

with m0 the free electron mass, βeff = 0.2 meV µm2, ∆eff =
−0.3 meV; blueshift energy used is Eblueshift = 0.55 meV;
κ = 0.015 meV µm−1.

∗ Email: stewong@sandia.gov

Supplementary note 1. PROBING THE
TOPOLOGY IN POLARITON LATTICES WITH

BLUESHIFT

In this section, we present how the system’s local
topology has been determined for a system with no
blueshift and one that is partly blueshifted [see for ex-
ample Figs. 2(b),(e),(h) and Figs. 2(d)-(f) in the main
text]. The topology in the polariton lattice is character-
ized directly from the continuous model with the spec-
tral localizer framework. In particular, the topology is
probed by looking at the real parts of the spectral local-
izer’s eigenvalues denoted Re

[
Spec

(
L(x,y,E)

)]
, and the

corresponding local Chern number CL
(x,y,E).

In the absence of any nonlinearly induced blueshift
[Fig. S1(a)], the lattice is topologically non-trivial. A
real-space picture of the topology is shown in Fig-
ure S1(b) by plotting the spectral flow of the localizer
Re
[
Spec

(
L(x,y0,E0)

)]
local Chern number CL

(x,y0,E0)
when

varying x with fixed y0 along the gray dashed line in
Fig. S1, and at E0 = 0.35 meV. The eigenvalues of the
localizer cross the zero axis around the edges of the lat-
tice, indicating a change of local Chern number and the
non-trivial topology of the lattice. Similarly, the topol-
ogy can also be spectrally resolved by varying (x0, y0, E)
along the energy axis with a fixed position (x0, y0). Fig-
ure S1(c) displays Re

[
Spec

(
L(x0,y0,E)

)]
and CL

(x0,y0,E),

for a fixed spatial position (x0, y0) given by the green
start in Fig. S1(a).

With a finite partial blueshift of the lattice [Fig. S1(d)],
B = EblueshiftI and Γ = 0, the topology is only changed
locally. By looking at the spectral localizer’s spectrum
along the dashed line, we can see a change of the topology
inside the blueshifted region: There is additional cross-
ing of zero for Re

[
Spec

(
L(x,y0,E0)

)]
and the local Chern

number becomes trivial inside of the pumped region, as
shown in Fig. S1(e). Moreover, the topology along the
energy axis is also modified inside the blueshifted region.
The local Chern number is now trivial up to approxi-
mately E = 0.8 meV as shown in Fig. S1(f), while there
was non-trivial local Chern number for E = 0.3−0.8 meV
in the unpumped system [see Fig. S1(c)].

The local Chern numbers shown in Fig. 1 in the main
text correspond to the calculated local Chern number
along the energy axis in Figs. S1(c),(f).
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FIG. S2. Propagation decay. (a)-(c) Snapshot of the total intensity of the polariton |ψ|2 = |ψ+|2 + |ψ−|2, with one-
dimensional (1D) slice plots that show the intensities as the excited polariton propagates along the bottom (magenta) and
top (orange) boundaries, respectively at y1 (magenta dashed line) and y2 (orange dashed line). The intensity plots use the
same color scale, and the gray dashed lines indicate the non-resonant pump pattern. In the 1D slice plots, the dashed lines
correspond to exponential curves e−x/ξp with decay length ξp. The parameter values for the Hamiltonian, and the dynamics
are the same as in Fig. 3 in the main text.

Supplementary note 2. PROPAGATION DECAY
DUE TO INTRINSIC POLARITON LOSS

This section contains additional information about the
propagation decay of an exciton-polariton.

Figure S2 plots the intensities as the excited polariton
propagates along the bottom (magenta) and top (red)
boundaries. The intensities decay exponentially due to
the polariton lifetime, τp ≈ 30 ps, and can thus be

fitted by an exponential e−x/ξp of decay length given
by ξp = vgτp ≈ 11.7 µm−1, where the group velocity
vg ≈ 0.35 µmps−1 can be found in the ribbon band struc-
ture in Fig. 2 in the main text.

Supplementary note 3. RECONFIGURABLE
TOPOLOGY ROBUST TO DISORDER

This section demonstrates that the newly formed topo-
logical interfaces are robust against disorder. In particu-
lar, disorder in the position of the quantum wells and in
the polariton potential are considered.

For example, for a 10% disorder in position (drawn
from a uniform distribution), the dynamics of the topo-
logical edge states and the system’s local Chern topol-
ogy is plotted in Fig. S3(a)-(b), thus showing the robust-
ness of the newly-formed topological interface (and of the
topological edge states) against shift in position of the
quantum wells. Similarly, one can show in Fig. S3(c)-(d)
that newly-formed topological interface and of the topo-
logical edge states are also robust against perturbation
in the polariton potential, with perturbation strength of
0.3 meV drawn from a uniform distribution.

Supplementary note 4. RECONFIGURABLE
TOPOLOGICAL ROUTING WITH SMALL

BLUESHIFT

Here, we show that the proposed method for reconfig-
urable topological routing also works if the blueshifted
region becomes gapless in the energy range of interest.
In particular, we discuss the case of a small blueshift,
leading to an interface between a topological non-trivial
gapped region with a topologically trivial system that is
gapless in the same energy range.

In the absence of blueshift, the lattice is topologically
non-trivial and its band structure and topology are simi-
lar to Figs. 2(a)-(c) in the main text [see Figs. S4(a)-(c)].
However, with a small blueshift of Eblueshift = 0.1 meV,
Γ = 0, depicted by the yellow overlay in Fig. S4(d), the
bands are only slightly blueshifted, resulting in the bulk
bands spectrally overlapping with the energy of interest
[see gray shaded area in Fig. S4(e)]. Thus, this partially
blueshifted system is gapless. Nevertheless, even though
the system is gapless in the relevant energy range, the
topology can still be classified using the spectral local-
izer [1, 2]. The right panel of Fig. S4(e) shows the lo-
cal Chern number, calculated using similar methods as
in Sect. Supplementary note 1, demonstrating that the
blueshifted portion of the system is topologically triv-
ial in part of the gray shaded energy range. Therefore,
a bulk-edge correspondence is possible at the interface
between the blueshifted and non-blueshifted regions. Al-
though the system is gapless, namely there is no com-
plete shared band gap in the nonlinear heterostructure,
the system features an incomplete band gap where the
topological mode appears [Fig. S4(h)] due to the change
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FIG. S3. Topological robustness for nonlinear-
induced topological interfaces. (a) Potential landscape
V (x) of the polariton system arranged in a honeycomb lat-
tice, with 10% perturbation on the quantum wells’ posi-
tion. The black and white regions correspond to potentials of
V = 6 meV and V = 0 meV, respectively. The yellow shaded
area depicts the pump pattern, the magenta star indicates the
position of the probe source. (b) Snapshot of the total inten-
sity of the polariton |ψ|2 = |ψ+|2+|ψ−|2, with the correspond-
ing eigenvalues of the spectral localizer Re

[
Spec

(
L(x,y0,E0)

)]
and the local Chern number CL

(x,y0,E0)
along the gray dashed

line in (a) and at E0 = 0.35 meV. (c)-(d) Same as (a)-(b)
but with perturbation on the polariton potential of strength
0.3 meV. The parameter values for the Hamiltonian, and the
dynamics are the same as in Fig. 3 in the main text.

of the local topology across the interface. These topo-
logical edge modes are dubbed “topological edge mode
resonances”. The red (and green) lines correspond to the
topological mode localized at the newly formed topolog-
ical interface (and bottom edge of the lattice), as shown
through the LDOS of the red line at E = 0.33 meV plot-
ted in Fig. S4(i).

The dynamic behavior of the nonlinearly induced gap-
less topological heterostructure is shown in Fig. S5. The
calculation of the local Chern number along the gray
dashed line [Fig. S5(a)] illustrates the change of topol-
ogy at E0 = 0.33 meV inside gapless energy range. The
system becomes trivial inside the pumped region, as cal-
culated at the final time (tf ). Consequently, using a
resonant probe source with a frequency and wavevec-
tor chosen in the incomplete band gap (see caption of
Fig. S5), a topological resonance can be excited that
propagates along the newly topological interface, as
shown in Fig. S5(b). Here, the gapless nature of the
trivial region means that the propagating edge mode is a
resonance, and has some overlap with the available bulk
states yielding another source of loss for this channel;
indeed, some diffraction into the bulk can be seen in

(d)

(g) (i)
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FIG. S4. Change of the topology due to the blueshift,
gapless case. (a) Potential landscape V (x) of the ribbon
polariton lattice arranged in a honeycomb lattice. The black
and white region correspond to a potential of V = 6 meV and
V = 0 meV, respectively. (b) Ribbon band structure of (a),
and the corresponding local Chern number CL

(x0,E) , at a the
given energy, calculated using the spectral localizer. In the
band structure, the black lines correspond to the bulk modes,
and the green (red) lines denotes the topological edge mode
dispersion localized at the bottom (top) side of the lattice,
as shown by the color-coded arrows in (a). The gray shaded
area indicates the first band gap, which is the energy range
of interest. (c) Local density of states (LDOS) of the red
line at E = 0.35 meV, kx = −0.6[π/a]. (d)-(f) Same as
(a)-(c) but with an yellow overlay depicting the blueshift of
the whole ribbon structure. In (f), the LDOS is plotted for
E = 0.33 meV, kx = −1[π/a]. (g)-(i) Same as (a)-(c) but with
the blueshift applied only to half of the ribbon lattice. The
red (and green) lines in the band structure correspond to the
topological edge modes localized at the interface between the
blueshifted and non-bleushifted areas (and at the bottom edge
of the lattice). In (h), the solid blue line and dashed magenta
line are the local Chern number calculated inside the non-
blueshifted and blueshifted regions, respectively. (i) LDOS
of the red line at E = 0.33 meV, kx = −1[π/a]. Parameter
values: The lattice constant is a = 2.95 µm (center-to-center
is 1.7 µm), radius of the rods is 1 µm; m = 1.3 × 10−4m0

with m0 the free electron mass, βeff = 0.2 meV µm2, ∆eff =
−0.3 meV; blueshift energy used is Eblueshift = 0.1 meV; κ =
0.02 meV µm−1.
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FIG. S5. Reconfigurable topological routing with non-
resonant pumping, gapless case. (a) Potential landscape
V (x) of the polariton lattice arrange in a honeycomb lat-
tice, and the local Chern number CL

(x,E) along the x0 gray
dashed line and at E = 0.33 meV, calculated using the spec-
tral localizer before the pump starts (ti) and at the final
time (tf ). The yellow shaded area depicts the pump pat-
tern, the magenta star indicates the position of the probe
source. (b) Snapshot of the total intensity of the polariton
|ψ|2 = |ψ+|2 + |ψ−|2. The parameter values for the Hamilto-
nian are the same as in Fig. S4. Dynamical parameter val-
ues: γc = 0.03 ps−1, γr = 1.5γc, gc = 5 × 10−3 meV µm2,
gr = 10× 10−3 meV µm2, R = 3× 10−4 ps−1µm2; S0,pump =
0.5 ps−1µm−2, S0,probe = 0.5 ps−1µm−2; ℏωs = 0.35 meV,
ks = 1[π/a]; κ = 0.015 meV µm−1.

(b) Gapped (c) Gapless

(a)

FIG. S6. Spectrum of the spectral localizer for a
gapped or gapless “heterostructure” interface. (a)
Potential landscape V (x) of the polariton lattice. (b),(c)
Eigenvalues of the spectral localizer Re

[
Spec

(
L(x,y0,E0)

)]
and

the local Chern number CL
(x,y0,E0)

along the dashed line in
(a) and at E0 = 0.325 meV. The blueshift energy used
for the gapped and gapless are Eblueshift = 0.55 meV and
Eblueshift = 0.1 meV, respectively. The parameter values for
the Hamiltonian are the same as in Fig. S1.

Fig. S5(b).
Note that the topological robustness of the topologi-

cal edge mode resonances are expected to be similar to
the topological edge modes obtained from a interface be-
tween gapped regions, as shown in Fig. S6. Indeed, the
topological robustness characterized by local gap, which
is the smallest eigenvalue (in absolute value) of the spec-

(a) (b)
Clean

Pert pos

Pert V

FIG. S7. Frequency-dependent reconfigurable topo-
logical routing with non-resonant pumpings in pres-
ence of disorder. (a) Potential landscape V (x, y) of the
polariton lattice arrange in a honeycomb lattice. The cyan
(blue) shaded area depicts the pump pattern with pump am-

plitude S
(0)
0,pump (S

(1)
0,pump), the magenta star indicates the po-

sition of the probe source. (b) Fourier transform (FT) of the
polariton signal over the red and green hatched areas in (a) for
the clean system and with perturbation in the quantum wells’
position of 10% and in the polariton potential of strength of
0.3 meV. The parameter values for the Hamiltonian and for
the dynamics are the same as in Fig. 4.

tral localizer is similar for both the gapped and gapless
case within the CL = 1 region, which is the (topolog-
ical non-trivial) region that guarantees the existence of
the topological edge mode. In this case, a smaller local
gap in the CL = 0 region does not affect the topolog-
ical edge mode, as perturbations within this region is
not expected to change the trivial topology, meaning the
topological interface remains. Notably, while the topo-
logical edge modes and topological edge mode resonances
have similar topological robustness, the greater overlap
of the topological mode resonances with the bulk modes
leads to an increased effective intrinsic loss, which is fur-
ther increased in presence of disorder due to additional
leakage to the bulk channels.

Supplementary note 5. ROBUSTNESS OF
MULTI-CHANNEL TOPOLOGICAL ROUTING

IN PRESENCE OF DISORDER

This section demonstrates the robustness of the multi-
channel configuration against perturbation. Here, we
consider perturbation in the quantum wells’ position up
to a 10% shift, and perturbation in the polariton poten-
tial up to 0.3 meV.
Figure S7(b) shows, for the clean and perturbed sys-

tem, the Fourier transform (FT) of the polariton time-
evolution summed over the different output-channel areas
[see the red and green hatched area in Fig. S7(a)]. The
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respective peaks at energies E1 and E2 in the clean sys-
tem reveal the multi-routing feature of the system where
excited polariton mode at energy E1 is routed toward the
red hatched area, while the the excited polariton at E2 is
routed toward the green hatched area. In presence of per-
turbation, the red curve originating from the red hatched
area pick an additional lower peak at E2. This peak at
E2 is coming from a E2-mode being partly re-routing at
the cyan interface, but this mode is not expected to be
robust as the cyan interface is not topological at energy
E2. Nevertheless, when perturbation is introduced, the
respective peaks at E1 and E2 remains, thus illustrating
the robustness of the multi-channel topological routing
in presence of disorder.

Supplementary note 6. EXPERIMENTAL
REALIZATION SCHEME

The envisioned experiment would employ a two-
dimensional lattice of coupled micropillar cavities, fabri-
cated from a GaAs-based microcavity structure with em-
bedded quantum wells, similar to those used in previous
demonstrations of polaritonic topological insulators [3].
The lattice geometry, typically honeycomb, would be
chosen to support topological phases under appropriate
symmetry-breaking perturbations, such as TE-TM split-
ting, magnetic fields, or staggered sublattice potentials.

Micropillars would have diameters in the range of
2.0− 3.0 µm, with center-to-center distances of approxi-
mately 1.6− 2.7 µm, depending on the pillar size, to en-
sure sufficient coupling between adjacent sites. The sys-
tem would be excited non-resonantly using a continuous-
wave laser beam tuned above the exciton resonance (e.g.,
740 nm), thereby creating an incoherent exciton reser-
voir. The spatial profile of the pump would be struc-
tured using a spatial light modulator (SLM), enabling
site-selective and dynamically reconfigurable injection of
the exciton population. This reservoir modifies the po-
lariton effective potential locally via repulsive interac-
tions, allowing control over onsite energies and, conse-
quently, the topological phase of different regions within
the lattice.

The pump profile would be engineered to induce sharp
boundaries between topologically trivial and nontrivial
regions within a single, continuous lattice. The SLM’s
spatial modulation resolution would be matched to the
lattice scale using appropriate optics. Real-time dynamic
reconfiguration of the domain wall could be achieved by
updating the SLM pattern.

The edge state propagation would be probed using
near-field photoluminescence imaging, collected through
a microscope objective and projected onto a CCD cam-
era. Momentum-space and energy-resolved measure-
ments could be performed via Fourier-space imaging and
spectral filtering, respectively. The time-resolved mea-
surements using a streak camera would allow observation
of edge state dynamics during topological transitions in-

duced by time-varying pump profiles.
The topological characterization would rely on numer-

ical evaluation of the spectral localizer from the mea-
sured or simulated system Hamiltonian, enabling a lo-
cal, real-space determination of topological invariants,
even in the presence of dissipation and inhomogeneous
pumping. This framework is particularly well-suited to
non-Hermitian, driven-dissipative systems and can be di-
rectly applied to validate the formation and manipulation
of topological boundaries in the experiment.
This experimental design enables the observation of

dynamically reconfigurable topological states in a pho-
tonic platform without requiring material modification
or slow electro-optic control, relying instead on fast, re-
programmable optical pumping patterns to manipulate
topological phases in real time.

Supplementary note 7. TOPOLOGICAL
ROUTING WITH CIRCULAR POLARIZED

PUMP PATTERN

So far, we have considered polariton lattices that are
topologically non-trivial at the energy range of interest
in the absence of a nonlinearly induced blueshift. How-
ever, with a gapless topologically trivial polariton lat-
tice, namely without any external magnetic field ∆eff =
0 meV, the existence of topological modes and the dy-
namical control of their propagation path can also be
realized using non-resonant circularly polarized pumps.

A. Non-trivial topology induced by spin-dependent
blueshift

Non-trivial topological polariton lattices can be real-
ized solely using a circularly polarized pump [4–7]. Us-
ing a circularly polarized non-resonant pump will lead
to nonlinear interactions only to one of the spin sec-
tors, inducing a blueshift in the corresponding polariton
spin sector [8, 9]. As a result, by redefining the refer-
ence polariton energy, an effective Zeeman splitting term
∆̃eff = Eblueshift is achieved, known as optical Zeeman
splitting, and can be used for inducing non-trivial topol-
ogy

B =

(
Eblueshift 0

0 0

)
=

(
Ẽ0 +

1
2∆̃eff 0

Ẽ0 − 1
2∆̃eff

)
,

(S1)

with Ẽ0 = Eblueshift/2. Figure S8(a) illustrates this op-
tical Zeeman splitting process. The landscape of the po-
lariton potential is shown for both spin sectors, where a
blueshift is only applied on the ψ+-sector (shown in red
shaded area). Similar to the previous band calculations,
the blueshift is manually added to the ψ+-subspace to
emulate the positive circular pump, with Γ = 0. The
corresponding ribbon band structure (left panel) and the
local Chern number at the associated energy in (right
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FIG. S8. Change of the topology due to the spin-
dependent blueshift. (a) Potential landscape V (x) of the
ribbon polariton lattice for the two spin sectors ψ+, ψ−, ar-
ranged in a honeycomb lattice. The black and white regions
correspond to a potential of V = 6 meV and V = 0 meV,
respectively. The red overlay denotes the blueshift applied
on a positive spin sector (ψ+). (b) Ribbon band structure
of (a), and the corresponding local Chern number CL

(x0,E),
at a the given energy, calculated using the spectral localizer.
In the band structure, the black lines correspond to the bulk
modes, and the magenta (blue) lines denotes the topological
edge mode dispersion localized at the bottom (top) side of
the lattice, as shown by the color-coded arrows in (a). The
gray shaded area indicate the first band gap, which is the en-
ergy range of interest. (c) Local density of states (LDOS) of
the magenta line at E = 0.5 meV, kx = −0.6[π/a]. (d)-(f)
Same as (a)-(c) but with the blueshift applied on both spin
sectors and on opposite half of the ribbon lattice. The blue
(and magenta) lines in the band structure correspond to the
topological edge modes localized at the interface between the
blueshifted areas (and at the edges of the lattice). In (e), the
solid red and green lines are the local Chern number calcu-
lated inside the ψ+-blueshifted and ψ−-blueshifted regions,
respectively. (f) LDOS of the magenta line at E = 0.53 meV,
kx = −0.72[π/a]. Parameter values: lattice constant is
a = 2.95 µm (center-to-center is 1.7 µm), radius of the rods
is 1 µm; m = 1.3 × 10−4m0 with m0 the free electron mass,
βeff = 0.2 meV µm2, ∆eff = 0 meV; spin-dependent blueshift
energy used is Eblueshift = 0.3 meV; κ = 0.01 meV µm−1.

panel) is plotted in Fig. S8(b), demonstrating the open-
ing of topological band gap with a local Chern number
CL

(x0,E) = −1. The magenta (blue) lines in the band

structure depict the topological edge modes localized at
the top (bottom) lattice edge, as shown by the LDOS of
the magenta line at E = 0.5 meV in Fig. S8(c). Note that
similar results can be realized by applying a blueshift on
the ψ−-subspace, with the difference being that the local
Chern number will be opposite, CL

(x0,E) = 1.

With a ψ+-blueshift on one part of the lattice and a
ψ−-blueshift on the other part of the lattice, an inter-
nal topological interface can be created. In particular,
these blueshifts can be realized by illuminating the sam-
ple with a left (or right) circular polarized non-resonant
pump in one part of the lattice (or the other), as shown
in Fig. S8(d) where the red (green) shaded area de-
notes the induced blueshift on the ψ+ (ψ−) subspace.
Such opposite circular polarized pump configuration will
lead to topological modes at the interface between the
CL

(x0,E) = −1 and CL
(x0,E) = 1 regions of the lattice.

Consequently, a new topological interface is formed with
a local Chern number difference of |∆CL

(x0,E)| = 2, re-

sulting in two topological edge modes at the interface
[see Fig. S8(e)]. Note that the magenta line in the rib-
bon band structure [see left panel of Fig. S8(e)] is dou-
bly degenerate, and its associated LDOS is plotted in
Fig. S8(f). Specifically, the ψ+ (ψ−) spin sector has
higher LDOS amplitude on the top (bottom) edge of the
lattice.

B. Probing the topology in polariton lattices with
spin-dependent blueshift

Here, we present how topology has been studied for
a polaritonic system with no external magnetic, and
with a blueshift on a single spin sector [see for exam-
ple Figs. S8(b),(e) in the main text], with Γ = 0. The
topology in the polariton lattice is characterized directly
from the continuous model with the spectral localizer,
similar to what is discussed in Sect. Supplementary note
1.

In the absence of non-resonant pump, namely without
any added blueshift, the system is topologically trivial, as
shown in Fig. S9(b),(c). In particular, even though the
system is gapless because of the lack of external mag-
netic field, and lacks time-reversal symmetry breaking,
its topology can still be calculated with the spectral lo-
calizer and the local Chern number. Figure S9(b) shows
that the local Chern number is zero along the dashed
line in Fig. S9(a) at E0 = 0.5 meV, and Figure S9(c)
indicates that the system is trivial at least up to 1 meV.

With opposite non-resonant circular polarized pumps,
as depicted with green and red overlays in Fig. S9(d),
opposite optical Zeeman effects arise in different regions
of the lattice. Figure S9(e) plots the spectral flow of
L(x0,y,E0) and the local Chern number CL

(x0,y,E0)
along

the dashed in Fig. S9(d) at E0 = 0.5 meV, revealing
the system is topologically non-trivial and that the up-
per and lower halves of the lattice possess opposite local
Chern numbers. Looking at the topology at the loca-
tion of the blue star (blue diamond) [see Fig. S9(d)],
the top (bottom) panel of Fig. S9(f) indicates the sys-
tem is non-trivial for some energy range starting from
around 0.4 meV with local Chern number CL

(x0,y0,E) = 1

(CL
(x0,y1,E) = −1).
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(e)

(d)

(f)

(b)

(a)

(c)

FIG. S9. Probe of the topology with the spectral
localizer for systems with non-resonant circular po-
larized pump. (a) Potential landscape V (x) of the polari-
ton lattice arranged in a honeycomb lattice. The black and
white regions correspond to a potential of V = 6 meV and
V = 0 meV, respectively. (b) Eigenvalues of the spectral
localizer Re

[
Spec

(
L(x0,y,E0)

)]
and the local Chern number

CL
(x0,y,E0)

along the dashed line in (a) and at E = 0.5 meV.

(c) Eigenvalues of the spectral localizer Re
[
Spec

(
L(x0,y0,E)

)]
and the local Chern number CL

(x0,y0,E) along the energy axis
and at the position of the magenta star in (a). (d)-(f)
Same as (a)-(c) but with a red and green overlay on the lat-
tice in (d), depicting the blueshift on the ψ+ and ψ− spin
sectors. The top and bottom panels of (f) are calculated
at the loaction of the blue star (x0, y0) and blue diamond
(x0, y1), respectively. Parameter values: lattice constant is
a = 2.95 µm (center-to-center is 1.7 µm), radius of the rods
is 1 µm; m = 1.3 × 10−4m0 with m0 the free electron mass,
βeff = 0.2 meV µm2, ∆eff = 0 meV; spin-dependent blueshift
energy used is Eblueshift = 0.3 meV; κ = 0.01 meV µm−1.

The local Chern numbers shown in Fig. S8 correspond
to the calculated local Chern number along the energy
axis in Figs. S1(c),(f).

(a) (c)

(d)(b)

FIG. S10. Reconfigurable topological routing with
non-resonant circular polarized pumping. (a) Poten-
tial landscape V (x) of the polariton lattice arranged in a
honeycomb lattice, and the local Chern number CL

(x0,y,E0)

along the x0 gray dashed line and at E0 = 0.5 meV, cal-
culated using the spectral localizer before the pump starts
(ti) and at the final time (tf ). The red and green over-
lays depict the positive (Spump,+) and negative (Spump,−) cir-
cular polarized pump, respectively. The blue star indicate
the position of the probe source. (b) Snapshot of the in-
tensity of the polariton for each spin sectors |ψ+|2, |ψ−|2 at
t = 455[ℏ] ≈ 300 ps. (c)-(d) Integrated intensity of each spin
sector over a width of 1 µm in the y-direction, at the posi-
tions given by the red and green crosses in (a), along the x0
and x1 gray dashed line in (a). The parameter values for the
Hamiltonian are the same as in Fig. S8. Dynamical parameter
values: γc = 0.05 ps−1, γr = 1.5γc, gc = 5 × 10−3 meV µm2,
gr = 10× 10−3 meV µm2, R = 3× 10−4 ps−1µm2; S0,pump =
2.3 ps−1µm−2, S0,probe = 0.5 ps−1µm−2; ℏωs = 0.5 meV,
ks = 0.5[π/a]; κ = 0.01 meV µm−1.

C. Topological routing

To illustrate topological routing using the optical Zee-
man effect, we consider the dynamic response of the sys-
tem shown in Fig. S10(a). The red and green overlays on
the polariton potential denote the pump pattern with
positive and negative circular polarized non-resonant
pumps, inducing a ψ+-blueshift and ψ−-blueshift respec-
tively. In particular, the dynamics of system is calcu-
lated using the modified rate equations [Eqs. (1)-(2)]
from the continuous model. Additionally, two slowly
increasing and circularly polarized non-resonant pump-
ing sources are used, as depicted in Fig. S10 with the
red and green overlays, each with maximum amplitudes
S0,pump = 2.3 ps−1µm−2 below the condensate thresh-
old; and a resonant Gaussian source with amplitude
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S0,probe = 0.5 ps−1µm−2, located at the blue star [see
Fig. S10(a)], is used to excite the topological modes. Note
that, without loss of generality, the spin relaxation is here
not included in our model [9, 10], although the main ef-
fect will be to increase the non-resonant pump powers to
achieve the same desired optical Zeeman strength. See
the Section Supplementary note 8 for additional informa-
tion.

The resulting dynamics of the change in real-space
topology from the difference in the local Chern num-
ber [see the right panels of Fig. S10(a)] demonstrates
the emergence of a topological interface in the interior of
the lattice and thus the existence of topological modes.
At the initial time (t0), before the lattice is illuminated,
the topology of the system is trivial with local Chern
number being CL

(x0,y,E0)
= 0 all along the gray dashed

and at E0 = 0.5 meV. At the final simulated time
(tf ), under circular polarized illumination, the system
is topologically non-trivial with local Chern numbers be-
ing CL

(x0,y,E0)
= −1 and CL

(x0,y,E0)
= 1 in the lower and

upper half of the lattice, respectively, in according with
the polarized pump patterns. Figure S10(b) shows a time
snapshot of the intensities |ψ+|2, |ψ−|2 for each spin sec-
tor, demonstrating the excitation and propagation of the
topological mode along the newly formed topological in-
terface. After reaching the right edge of the lattice, the
topological mode is split into an upward and downward
propagating topological mode along the outer topological
interface from the lattice edge.

Remarkably, at the bifurcation of different topologi-
cal interfaces, a finite spin separation occurs. In par-
ticular, when the excited topological modes reached the
right edge of the lattice and split into upward and down-
ward propagating topological modes [see Fig. S10(b)],
ψ+ polariton states are dominant in the upper half of
the lattice, and vice versa for the ψ− states. This spin
separation is quantified by looking at the integrated in-
tensities I+, I− over finite width of 3 µm centered around
x0 and x1 [see dashed line sin Fig. S10(a)], as plotted in
Figs. S10(c)-(d). At x1 [see Fig. S10(d)], on the right lat-
tice edge, the spin up intensity I+ is predominant in the
upper half lattice edge, while the spin down I− is higher
on the lower half. At x0 [see Fig. S10(c)], the topologi-
cal edge mode along the top (or bottom) has higher I+
(or I−). Note that similar topological mode propagation
can be achieved when combined with a linearized po-
larized pump, inducing an internal trivial gapped region
and topological interface, akin to the outer edge of the
lattice. Consequently, using a linearly polarized pump
in addition to particular circularly polarized pump pat-
terns provides a possible control mechanism for topolog-
ical modes, as well as over the position where the modes
bifurcate and the spin separation arises.

In Figure S10, the pump is given by

Spump =


S0,pump

1

1+e−
t−t0
2τ

(
1

0

)
for y in lower half

S0,pump
1

1+e−
t−t0
2τ

(
0

1

)
for y in upper half

,

(S2)
with t0 = 10[ℏ], τt = 0.9[ℏ], and the resonant probe is a
Gaussian source, located at (xs, ys) = (0, 0) [see blue star
in Fig. S10(a)] and centered at a time t0 = 300[ℏ],

Sprobe = S0,probee
− (xs−x)2+(ys−y)2

2τ2
xy e

− (t−t0)2

2τ2
t

× e−iωsteiksx

(
0

1

)
,

(S3)

with τxy = 1 µm, τt = 40[ℏ].

Supplementary note 8. EFFECT OF SPIN
RELAXATION FOR THE OPTICAL ZEEMAN

SPLITTING

As the optical Zeeman effect relies on the spins of the
exciton reservoir nr(x, t) = [nr,+(x, t), nr,−(x, t)], this
section studies the effect of considering spin relaxations
in the rate equations. The spin relaxation is included by
considering the couplings J between the different spins
in the exciton reservoir. The rate equations are therefore
slightly modified as [9]

iℏ
∂

∂t
ψ = H0ψ − iℏ

γc
2
ψ + gc|ψ|2ψ

+

(
gr + iℏ

R

2

)
nrψ + Sprobe,

(S4)

∂

∂t
nr,± = −

(
γr +R|ψ±|2

)
nr,± + J(nr,∓ − nr,±)

+ Spump,±,
(S5)

where H0 is the Hamiltonian and denotes the kinetic en-
ergy and the couplings between of the polaritons, γc and
γr are the relaxation rates for the polariton state and
exciton reservoir, gc and gr are the polariton-polariton
and polariton-exciton interaction strengths, R is the am-
plification rate of the polariton state due to stimulated
scattering of polariton from the reservoir, Sprobe(x, t)
is the resonant probe for exciting the polaritons, and
Spump(x, t) is the non-resonant pump for exciting the free
carriers.

One of the main consequences of spin relaxation is the
pump power used to achieved a given blueshift on the
spin sectors. Indeed, from Eq. (S5), the steady states of
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(d)

(b)

(c)

(a)

FIG. S11. Optical Zeeman effect with spin relax-
ations. (a) Theoretical blueshift from the steady state solu-
tion of the ψ+ and ψ− density exciton reservoir in the rate
equations [Eq. (S5)], with S0,pump,− = 0 ps−1µm−2. Blue
line is the effect of the Zeeman splitting, calculated from
the difference between the ψ+ and ψ− blueshift. (b) Po-
tential landscape V (x) of the polariton lattice arranged in
a honeycomb lattice. The magenta star indicate the po-
sition of the probe source. (c) Temporal evolution of the
spin-dependent blueshift. (d) Snapshot of the total inten-
sity of the polariton |ψ|2 = |ψ+|2 + |ψ−|2. The parame-
ter values for the Hamiltonian are the same as in Fig. S9.
Dynamical parameter values: γc = 0.05 ps−1, γr = 1.5γc,
gc = 5 × 10−3 meV µm2, gr = 10 × 10−3 meV µm2, R =
3×10−4 ps−1µm2, J = 0.09 ps−1; S0,pump,+ = 7.5 ps−1µm−2,
S0,pump,− = 0 ps−1µm−2, S0,probe,± = 0.5 ps−1µm−2; ℏωs =
0.86 meV, ks = 0.5[π/a].

the density of the exciton reservoir reads

nr,−,th =
J

γr(γr + 2J)
Spump,+ +

γr + J

γr(γr + 2J)
Spump,−,

(S6)

nr,+,th =
1

γr + J
Spump,+ +

J

γr + J
nr,−,th. (S7)

As a result, by redefining the reference polariton energy,
an effective Zeeman splitting term ∆̃eff = Eblueshift,+ −
Eblueshift,− is achieved and the the overall system is

blueshifted by Ẽ0 = (Eblueshift,+ + Eblueshift,−)/2

B =

(
Eblueshift,+ 0

0 Eblueshift,−

)

=

(
Ẽ0 +

1
2∆̃eff 0

Ẽ0 − 1
2∆̃eff

)
.

(S8)

Thus, injecting single spin excitons will lead to a fi-
nite density of the other exciton spin as well, meaning
that higher pump powers are required to achieve the
same amount of blueshift as in the case of neglected
spin relaxation. According to Fig. S11(a), a blueshift

of ∆̃eff = 0.3 meV needs a pump power of S0,pump,+ =
7.5 ps−1µm−2, S0,pump,− = 0 ps−1µm−2, compared to
S0,pump = 2.3 ps−1µm−2 in Sect. Supplementary note
7C when neglecting the spin relaxation.
Figures S11(b)-(d) shows the dynamics of the system

using the modified rate equations [Eqs.(S4)-(S5)]. In par-
ticular, a non-resonant positive circularly polarized pump
is illuminating the whole lattice (the overlay of the pump
is not shown here), leading to the injection of ψ+-spin
excitons in the reservoir. The temporal evolution of the
blueshift derived from the ψ+ and ψ− excitons is shown
in Fig. S11(c), demonstrating the ψ+ excitons indeed re-
laxed into ψ−. A resonant Gaussian source is used to
excite the topological edge mode once the steady state
of the exciton reservoir is reached, and a snapshot of the
excited topological mode is plotted in Fig. S11(d), show-
ing that the edge mode is propagating along the edge
without being back reflected, as expected.
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