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Abstract
The propagation path of topologically protected states is bound to the interface between regions with different
topology, and as such, the functionality of linear photonic devices leveraging these states is fixed during fabrication.
Here, we propose a mechanism for dynamic control over a driven dissipative system’s local topology, yielding
reconfigurable topological interfaces and thus tunable paths for protected routing. We illustrate our approach in non-
resonantly pumped polariton lattices, where the nonlinear interaction between the polaritons and the exciton
reservoir due to non-resonant pumping can yield picosecond-scale changes in the propagation paths of the chiral
edge states. To analytically confirm the numerically observed topological dynamics, we generalize the spectral
localizer framework to non-linear non-Hermitian Chern materials and apply this framework to a continuous model of
the polariton system based on a driven-dissipative Gross-Pitaevskii equation. In doing so, we show that the local
changes in the polariton lattice’s topology are captured by a local Chern marker. Looking forward, we anticipate such
reconfigurable topological routing will enable the realization of novel classes of topological photonic devices.

Introduction
Over the past decade, topological photonics has

emerged as a promising collection of physical principles
for controlling the flow of light. For example, there is
significant interest in harnessing topological phenomena
for potential applications and integration into nanopho-
tonic systems to realize robust photon routing1–11 and
create lasers with increased coherence12–16. In particular,
the chiral edge modes supported by photonic Chern
insulators are an especially enticing class of states for
designing next-generation optical devices, as these states
both enable nonreciprocal transport and are robust
against fabrication imperfections. Prior studies have
observed chiral edge modes in a variety of photonic
platforms, including photonic crystals with gyro-optical
materials17, shifted ring-resonator arrays18,19, helical
waveguide arrays20, and more recently exciton-polariton
lattices21.

However, the interface localization of a photonic Chern
heterostructure’s chiral edge modes also presents a sub-
stantial limitation on device design: these states’ propa-
gation path is fixed by the system’s geometry and cannot
be readily altered after the device is fabricated. Although
there are previous proposals for reconfigurable topologi-
cal systems, they are predominantly in the microwave
regime with slow reconfigurability time scales in the range
of milliseconds22,23, and are thus not technologically
relevant for integrated nanotechnologies. At tele-
communication wavelengths, prior work on reconfigur-
able photonics has either been realized through
dynamically controlling each lattice element24, an
approach that is challenging to scale, or through tunable
spatially non-uniform non-Hermiticity25, which requires
introducing large material absorptivities. As such, pho-
tonic systems rooted in linear topology are best suited to
devices tailored for a single, static function, but are poor
candidates for applications requiring dynamic behavior,
such as routing. In addition, while many studies in non-
linear systems have considered topological solitons that
can be injected at different lattice sites26–31, these states
are still constrained to move along the lattice’s structural
boundary or remain confined in its bulk32–34, and thus
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yield similar design constraints as linear systems. Alto-
gether, an ideal reconfigurable topological platform would
instead exhibit a scalable, fast, and dynamic method for
changing the system’s local Chern phase without intro-
ducing additional propagation losses, so that a reconfi-
gurable router can take full advantage of a chiral edge
mode’s inherent reflectionless propagation35 and robust-
ness against dephasing36.
Here, we propose an approach for realizing fast recon-

figurable local Chern topology in driven-dissipative pho-
tonic systems and numerically illustrate our method in a
non-resonantly pumped exciton-polariton platform37

operating at telecommunication wavelengths. In parti-
cular, starting with a topologically non-trivial polariton
lattice21,37–41 (Fig. 1a), a spatially non-uniform incident
pump can locally change the system’s topology to be tri-
vial through a nonlinear matter-matter interaction
between the exciton reservoir and the polaritons. Thus, an
incident signal propagating in a chiral edge state is
guaranteed to follow the new topological boundary
determined by the non-resonant pump pattern (Fig. 1b).
As the exciton reservoir is dissipative, if the non-resonant
pump is turned off, the full lattice returns to its original
topological phase after a characteristic decay time, but
this dissipation does not strongly influence the polaritons
such that their propagation remains relatively lossless.
Moreover, by superposing the reconfigurable Chern
topology features using multiple non-resonant pump
patterns and pump amplitudes, we realize reconfigurable
multi-channel topologically protected routing via differ-
ent topological interfaces in different energy ranges. To
characterize the local topological dynamics we observe in
our system, we develop a nonlinear non-Hermitian gen-
eralization of the spectral localizer framework42–47 to use

with a continuum model of the exciton-polariton lattice
based on the driven-dissipative Gross-Pitaevskii equations
for experimentally realizable parameters21. Given the
possible tiny extent of a pumped region, the non-linear
non-Hermitian local Chern marker we establish provides
a rigorous and quantitative understanding of the lattice’s
local topology. Overall, while there has been growing
interest in inducing topological phase changes via optical
pumping without relying on external magnetic
fields37,48–56, our results show that it is possible to dyna-
mically reconfigure a system’s topological interfaces post-
fabrication by leveraging a nonlinear response, a phe-
nomenon that should be available in a variety of systems
featuring nonlinear interactions and may be of practical
use for multitasking devices while retaining the robust-
ness of topological protected edge modes.

Results
Nonlinearly-induced topological interface
To illustrate dynamic control of local topology, we

consider Chern polariton lattices consisting of quantum
wells embedded in a honeycomb array of vertical micro-
cavities21,57 under non-resonant pumping. In particular,
the non-resonant pumping populates an exciton reservoir,
and the dynamics of the polaritons ψðx; tÞ with the
exciton reservoir nrðx; tÞ are described by a driven-
dissipative Gross–Pitaevskii equation54,58

iℏ
∂

∂t
ψ ¼ H0ψ � iℏ

γc
2
ψ þ gc ψj j2ψ þ gr þ iℏ

R
2

� �
nrψ þ Sprobe

ð1Þ

∂

∂t
nr ¼ � γr þ R ψj j2� �

nr þ Spump ð2Þ

Here, H0 is the linear polariton Hamiltonian, γc and γr
are the relaxation rates for the polariton state and exciton
reservoir, gc and gr are the polariton-polariton and
polariton-exciton interaction strengths, R is the amplifi-
cation rate of the polariton state due to stimulated scat-
tering from the reservoir, Sprobeðx; tÞ is the resonant probe
for directly exciting the polaritons, and Spumpðx; tÞ is the
non-resonant pump used for injecting free carriers. When
Spump x; tð Þ ¼ 0, the non-trivial topology in the polariton
lattice21,37–41 results from the interplay of an external
magnetic field and an effective spin-orbit coupling. The
external magnetic field breaks time-reversal symmetry,
and induces a Zeeman splitting between the spin-up and
spin-down excitons, while the effective spin-orbit cou-
pling originating from the coupling between the trans-
verse electric (TE) and magnetic (TM) photonic modes
opens a topological gap by coupling the two spin sectors.
The corresponding Hamiltonian H0 is given, in the

Non-resonant

pump

Port 1Port 1

Port 2

Port 3Port 3

CL = 1 CL = 1
CL = 0

Port 2

ba

Fig. 1 Scheme for dynamical control over the topological mode’s
propagation path. a Schematic of an exciton-polariton topological
Chern insulator. Energy is injected into the chiral edge mode (red)
with a resonant laser and propagates along the boundary of the
lattice to the output Port 2. b Illuminating the same nonlinear lattice
with a non-resonant pump (blue) renders the lattice locally
topologically trivial and leads to a different path of propagation for
the topological mode. The exact path depends on the shape of the
pump pattern. In (b), the topological mode propagates to the output
Port 3, while avoiding the output Port 2
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polariton spin basis ψ xð Þ ¼ ψþ xð Þ;ψ� xð Þ� �
, by

H0 ¼
� ℏ

2m∇2 þ V xð Þ þ 1
2Δeff �βeff ∂x � i∂y

� �2
�βeff ∂x þ i∂y

� �2 � ℏ
2m∇2 þ V xð Þ � 1

2Δeff

 !
ð3Þ

where m is the polariton mass, V xð Þ is the polariton
potential patterned as a honeycomb lattice, βeff is the
spin-orbit coupling strength, and Δeff is the Zeeman
coefficient. When Spump x; tð Þ≠0, it acts as an external
dynamical perturbation to locally blueshift the band
structure through the creation of the steady-state exciton
reservoir nrðx; tÞ. Altogether, the instantaneous polariton
Hamiltonian H t;ψ; nrð Þ is thus non-Hermitian and non-
linear,

H t;ψ; nrð Þ ¼ H0 þ iΓ ψ; nrð Þ þ B ψ; nrð Þ ð4Þ

where iΓ ψ; nrð Þ ¼ �ℏ γc
2 þ ℏ R

2 nr gathers the non-
Hermitian terms in Eq. (1) from the driven-dissipative
system, and B ψ; nrð Þ ¼ gc ψj j2 þ grnr is the blueshift
arising from the repulsive nonlinear interaction between
the polaritons and the exciton reservoir58–62.
To identify the polariton system’s topological dynam-

ics63,64 directly from the continuous Hamiltonian model
[Eq. (4)], we generalize the two-dimensional (2D) spectral
localizer for static non-Hermitian systems45,46 to incor-
porate nonlinearities. In particular, the polariton lattice’s
topology can be classified at a specified location and
energy with a given occupation using the instantaneous
nonlinear non-Hermitian spectral localizer L x;Eð Þ,

L x;Eð Þ X;Y ;H t;ψ;nrð Þð Þ ¼
H t;ψ; nrð Þ � E1½ � κ X � x1ð Þ � iκ Y � y1ð Þ
κ X � x1ð Þ þ iκ Y � y1ð Þ � H t;ψ; nrð Þ � E1½ �y

 !
ð5Þ

where H is the Hamiltonian matrix derived from the
finite-difference discretization of the instantaneous con-
tinuous model [Eq. (4)], X and Y are the position
matrices that (in this basis) are diagonal with entries
corresponding to the real-space coordinates of the finite-
difference degrees-of-freedom in the x- and y-directions,
and 1 is the identity matrix. In Eq. (5), the subscript
ðx;EÞ indicates the location (x) and energy (E) where the
local topology will be classified, and κ is a scaling
coefficient that enforces consistent units between the
position and Hamiltonian matrices. κ also ensures
balanced spectral weights on the system’s position
information relative to its Hamiltonian, and is typically
of the order κ � Egap=L

44,46,65 where Egap is the relevant
spectral gap’s width and L the length of the finite system

considered. Using L x;Eð Þ, instantaneous local topology at
some spatial-energy coordinate ðx;EÞ can be determined
using the local Chern number CL

x;Eð Þ
42,45

CL
x;Eð Þ X;Y ;H t;ψ; nrð Þð Þ ¼ 1

2
sigR L x;Eð Þ X;Y ;H t;ψ; nrð Þð Þ� �

ð6Þ

where sigR M½ � is the signature of the line-gapped matrix
M, i.e., the difference between the number of eigenvalues
with positive and negative real parts. Note, CL

x;Eð Þ is
provably equal to the global Chern number for lossless
crystalline gapped systems with E chosen in the relevant
band gap44. Altogether, the topology of the exciton-
polariton lattice can be identified using the local Chern
number CL

x0;Eð Þ with x0 chosen inside the system’s bulk
and E the given energy of interest [see Supplementary
Note 1 for further details].
The nonlinearity inherent in the exciton–polariton

system can yield a shift in the lattice’s local topology. In
particular, we consider a ribbon geometry of the 2D sys-
tem, i.e., periodic in one direction and finite in the other
[Fig. 2a], and use experimentally realizable parameters
from ref. 21. The ribbon band structure of the unpumped
system [Fig. 2b] features a topologically non-trivial band
gap [gray shaded area] with corresponding chiral edge
modes [see red/green solid lines]. The right panel of Fig.
2b indicates the local Chern number as a function of
energy, confirming the unpumped system’s topology. As
the entire lattice is non-trivial, there is a topological
interface at the lattice’s boundaries and therefore the
chiral edge modes can be identified in the local density of
states (LDOS) at the structure’s edges [Fig. 2c].
However, by including a reservoir-induced blueshift, the

topology at the given energy range of interest can change.
For example, by non-resonantly pumping on the entire
lattice, the polariton potential landscape blueshifts [Fig.
2d] and thus the system’s band structure does as well [Fig.
2e]. As such, this blueshift induces the lattice’s topology to
become trivial in the chosen energy range [gray shaded
area in Fig. 2e]. Therefore, if only half of the lattice is non-
resonantly pumped [Fig. 2g, h], only that portion of the
lattice will be rendered trivial in the energy range of
interest. In other words, such non-uniform pumping
creates a topological interface between the pumped and
unpumped regions within the lattice. Moreover, the cor-
responding ribbon band structure for this nonlinearly
induced “heterostructure” reveals the existence of chiral
edge modes that cross the bulk band gap at the chosen
energy [Fig. 2h] that are associated to states localized at
the newly formed topological interface [Fig. 2i] and at the
lattice’s boundary. Notably, the topological transition
across the “heterostructure” interface is attributed to a
reservoir-induced blueshift, where instead of changing the
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overall topology of the exciton-polariton manifold, the
repulsive nonlinear interaction between the exciton
reservoir and the exciton-polariton will shift the energies
of the polariton states relative to the unpumped regions.

Topological routing with non-resonant pump patterns
A prototypical system demonstrating a reconfigurable

Chern interface in a polariton lattice is shown in Fig. 3a, b.

Here, a non-resonant pump with amplitude below the
condensate threshold [blue shaded area] is used to
populate an exciton reservoir that reaches a steady-state
due to its inherent dissipation, while a resonant probe
source [magenta star] excites the chiral edge modes. As
such, after the exciton reservoir becomes sufficiently
populated, the polaritons experience a blueshift due to the
repulsive nonlinear interactions according to Eqs. (1)–(2),
locally modifying the polariton’s topology, and creating
new topological interfaces that were not present in the
unpumped system. Once the non-resonant pump is
turned off, the exciton reservoir’s population dissipates,
returning the polariton’s local topology to its original
configuration. Moreover, we emphasize that the resonant
probe Sprobeðx; tÞ is a weak coherent excitation introduced
to launch the topological edge modes. As this probe
operates below the condensation threshold and does not
significantly populate the exciton reservoir (because the
topological edge modes are resonantly excited), the line-
width of the excited topological exciton-polaritons is not
subject to the same broadening mechanism as the
reservoir-coupled dynamics. As such, the linewidth values
used in our simulations refer to this resonant signal.
The complete temporal evolution of our non-resonantly

pumped exciton-polariton lattice is shown in Fig. 3c, g,
where we consider a system that is initially pumped in one
region, but that pump is later turned off. The dynamics of
the local blueshift Eblueshift tð Þ ¼ grnrðtÞ in the pumped
region are shown in Fig. 3c, which demonstrates that the
population of the exciton reservoir initially saturates at a
steady-state (with Eblueshift ¼ 0:55meV) after a char-
acteristic time given by γr before becoming completely
depleted once the pump amplitude is switched off.
Moreover, throughout the evolution of the reservoir
population, real-space snapshots of the topological
dynamics of this non-Hermitian and non-linear system
can be found using the spectral localizer framework, as
shown in the bottom panels of Fig. 3e–g. Note, given the
tiny extent of the pumped region, topological band theory
would only provide qualitative insights of the topology of
the system, which may break down for this region’s size.
Instead, by monitoring the real parts of the spectral
localizer’s eigenvalues Re Spec Lðx;y0;E0Þ

� �� �
for choices of x

along the gray dashed line in Fig. 3b and at the topological
mode’s expected energy E0= 0.35 meV [see Fig. 2], the
change in the polariton’s topology can be directly
observed in a quantitative and rigorous manner, as this
spectral flow (at a given t) is responsible for local shifts in
CL

x;y0;E0ð Þ. At the outer edge of the lattice, one of the
eigenvalues of the spectral localizer crosses zero and the
local Chern number changes from CL

x;y0;E0ð Þ ¼ 0 ! 1 (as x
varies from outside the lattice to inside) because the lat-
tice is topologically non-trivial while the surrounding
empty space is trivial. In the presence of the populated
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exciton reservoir, there is an additional change in the
polariton’s topology from the shape of the non-resonant
pump: the local Chern number is trivial CL

x;Eð Þ ¼ 0 inside
the pumped region [see bottom panels of Fig. 3e]. Once
the pump is turned off [Fig. 3f, g], the polariton’s non-
linear interactions with the exciton reservoir dissipate and
the blueshift eventually becomes negligible, such that the
previously pumped region becomes topological again,
removing the in-lattice topological boundary [see bottom
panels of Fig. 3f, g]. Note that during this change in the
exciton reservoir, the varying nonlinearly-induced blue-
shift may cause frequency shifts or chirps as the wave
packet propagates along the newly formed interface, but
any such frequency components ultimately decay due to
the system’s dissipative nature.

Overall, the picosecond time-scale reconfigurability of
the exciton-polariton lattice’s topology is realized thanks
to the driven-dissipative nature of the system, and is
particularly effective because the dominant portion of the
system’s intrinsic dissipation γr manifests in a different
sector than the system’s propagating states such that the
polariton transport is not strongly influenced. While an
intrinsic loss γc is present for the polariton state, this loss
is only included to model realistic exciton-polariton sys-
tems and is by no means necessary to realize fast recon-
figurable Chern topology [see Supplementary Note 2 for
further details]. Specifically, the dynamics of the excited
polariton states, shown with the real-space snapshots in
Fig. 3e–g, can be summarized as follows: When the lattice
is (locally) pumped, the excited polariton state at the
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and the local Chern number CL
x;y0 ;E0ð Þ along the gray

dashed line in (b) and at E0= 0.35 meV. The intensity plots use the same color scale, and the gray dashed lines indicate the non-resonant pump
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bottom-left side of the lattice initially propagates along
the edge of the topologically non-trivial lattice, before
turning upward along the nonlinearly induced topological
interface without being back-reflected [Fig. 3e], as the
pumped region is a trivial insulator at the excited polar-
iton energy E= 0.35 meV. However, when the non-
resonant pump is turned off, the exciton reservoir dis-
sipates and the previously pumped region returns to being
topological. As such, there is no longer a topological
interface in the system’s bulk, and the topological edge
mode that was previously propagating in the bulk starts to
decay as the system’s bulk becomes gapped again [Fig. 3f].
Subsequently, the excited polariton propagates along the
lattice edge without being back-reflected [Fig. 3g].
The dynamics of the chiral edge mode’s propagation can

be quantified by looking at the intensity at different out-
put locations, as shown in Fig. 3d. The output intensity at
the lattice’s upper left corner Iout;1 [dark red cross]
reaches a plateau when the lattice is non-resonantly
pumped, while the output intensity at the bottom right
corner Iout;2 [dark green cross] reaches a plateau when the
pump is turned off. Notably, Iout;2 reaches a steady state in
approximately 70 ps with a high on/off state ratio, making
it a promising candidate for ultrafast optical-switching66.
Altogether, with the base energy of the exciton-polariton
being about 1 eV21,37–41 [see Methods], fast reconfigurable
topologically protected routing at telecommunications
wavelengths is achieved solely from the dynamical control
over the shape and existence of a non-resonant pump
applied to the non-trivial polariton lattice, which can be
realized using spatial light modulators or electrical
pumping67,68 [see also Supplementary Note 6 for further
details].

Multi-channel topological routing with multiple non-
resonant pump patterns
Beyond reconfigurable single-channel routing demon-

strated in Fig. 3, the use of multiple pump patterns in the
system enables reconfigurable multi-channel topological
routing. While a straightforward extension of the previous
results provides a recipe to simultaneously guide infor-
mation along topological interface modes from different
input channels to different output channels at a single
frequency, the use of multiple pump patterns with dif-
ferent amplitudes also enables frequency-dependent
reconfigurable topological routing where the propaga-
tion path of the topological edge states varies based on
their frequency.
To illustrate reconfigurable multi-channel topological

routing, we consider a prototypical exciton-polariton
lattice where two non-resonant pump patterns with dif-
ferent pump amplitudes are utilized, as shown in Fig. 4a,
d, while a single probe source is used to excite topological
edge modes at several energies. In particular, one pump

pattern has a pump amplitude small enough to only
induce a change of the system topology in a lower energy
range, while the second pump is strong enough to modify
the system’s topology in a higher energy range. Alto-
gether, the different pump amplitudes induce local blue-
shifts of different strengths, resulting in energy-dependent
modifications to the system’s local topology and thus
nonlinearly induced topological interfaces that are distinct
for inputs at different energies.
A real-space snapshot of the exciton-polariton lattice’s

topological dynamics is shown in Fig. 4e–g, where the
nonlinearly induced blueshifts of the non-resonant pumps
in the middle [cyan] and lower right corner [blue] are
respectively Eblueshift ¼ 0:11meV and Eblueshift ¼ 0:6meV
once the corresponding population of the exciton reser-
voir reached a steady state. As such, the local blueshift in
the lattice’s middle leads to a gapless “heterostructure”
interface configuration [Fig. 4b] which is topological for
the lower band gap energy range while being trivial for the
higher band gap energy range [see Figs. S4, S5 in Sup-
plementary Note 4 for further details]. In contrast, the
local blueshift in the lower right corner is similar to Fig. 2
and Fig. 3 [see Fig. 4b], where there is a shared bulk
spectral gap at the higher energy polariton’s frequency on
both sides of the nonlinearly induced topological inter-
face. Thus, the topologically distinct domains of the sys-
tem at energies in the lower and higher energy ranges are
different, as plotted in Fig. 4e, f. Note that this multi-
routing configuration makes use of a particular feature of
the spectral localizer framework to be able to predict the
existence of topological modes even in the absence of a
bulk band gap46,47,69, such as for the gapless “hetero-
structure” interface between the unpumped lattice and
the region with a smaller pump amplitude [cyan]. As a
result, the chiral edge modes along such interfaces form
“topological edge resonances” as they energetically over-
lap with bulk modes, although at different wave-vectors.
As such, these topological edge resonances scatter into
the bulk modes whenever these edge modes encounter a
scatterer, such as a corner or defect, that enables wave-
vector matching with the bulk modes through broken
translational symmetry along the edge. Despite leaking
into the bulk, these topological edge resonances are
expected to exhibit robustness guaranteeing their exis-
tence similar to topological edge modes obtained from a
gapped “heterostructure” interface [see Fig S6 in Supple-
mentary Note 4 for further details]. The effect of disorder
on these topological edge mode resonances results in an
increased effective intrinsic loss due to increasing leakage
to the bulk modes.
Overall, an excitation at E1 in the lower energy range

propagates along the topological interface induced by the
cyan non-resonant pump [Fig. 4h], while an excitation at
E2 in the higher energy range propagates through the cyan
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pump area while still experiencing the topological inter-
face formed by the blue shaded area [Fig. 4i]. Therefore,
for a point source resonantly exciting topological modes
at energies E1 and E2, the two topological modes will be
guided to different output channels [Fig. 4g]; taking the
Fourier transform (FT) of the polariton time-evolution
summed over the different output-channel areas [see Fig.
4d] leads to the respective peaks at energies E1 and E2
[Fig. 4c]. These peaks in the transmission spectrum are
protected against disorder, illustrating the robustness of
the multichannel topological routing despite the gapless-
ness of one of the nonlinearly induced topological “het-
erostructures” [see Supplementary Note 5 for further
details]. Altogether, our results demonstrate multi-

channel (frequency-dependent) topological routing that
can be dynamically controlled by multiple non-
resonant pumps.

Discussion
To summarize, we have presented a technologically

realistic proposal for dynamic reconfigurable topological
routing in nonlinear driven-dissipative photonic systems
in a single device, and shown that this approach works at
telecommunication wavelengths and at picosecond time
scales. This method has been illustrated with non-
resonantly pumped exciton-polariton lattices, and in
particular, using a continuum model of the driven-
dissipative Gross-Pitaevskii equations parameterized
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non-resonant pump (blue). b Ribbon band structures at the interface between the unpumped and pumped regions. The left band structure is for the
smaller amplitude pump and corresponds to a blueshift of Eblueshift ¼ 0:11meV, while the larger amplitude pump corresponds to Eblueshift ¼ 0:6meV.
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x;y;Eið Þ calculated over the system at the energy Ei= E0= 0.35 meV and Ei= E0= 0.65 meV, respectively. g Snapshot of the total intensity of

the polariton ψj j2 ¼ ψþ
�� ��2 þ ψ�j j2. h, i Snapshot of the total intensity of the polariton |ψ | 2 when the probe source is resonantly exciting only either

at the E1 ¼ ℏωs;1 or E2 ¼ ℏωs;2 energy, respectively. The intensity plots in (g)–(i) use the same color scale. In (e)–(i), the snapshot of the topological
dynamics has been taken at t= 658 ps, and the gray dashed lines indicate the non-resonant pump patterns. The black dotted lines in (e), (f) indicate

the lattice boundary. The parameter values for the Hamiltonian are the same as in Fig. 2, the smaller pump amplitude Sð0Þ0;pump = 0.5 ps−1 µm−2, larger

pump amplitude Sð1Þ0;pump ¼ 2:7 ps−1 µm−2, probe amplitude S0;probe ¼ 0:5 ps−1 µm−2, the resonant frequencies are ℏωs;1 ¼ 0:35meV and ℏωs;2 ¼
0:65meV [see Methods], and κ= 0.015 meV µm−1
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with prior experimental results21. Moreover, we have
demonstrated dynamic control over the propagation path
of the system’s chiral edge states—including its frequency-
dependent behavior—through a nonlinearly induced
topological phase transition stemming from spatially non-
uniform non-resonant pumping of the exciton reservoir.
To rigorously prove the system’s local topological phase
change, we have generalized the spectral localizer frame-
work to accommodate nonlinear non-Hermitian systems,
and found a broad range of pump powers and polariza-
tions are suitable for inducing a local nonlinear topolo-
gical transition in exciton-polariton lattices. More
broadly, our framework enables a rigorous and quantita-
tive probing of the dynamical change of the topology over
time and within regions containing very few unit cells
where topological band theory would be unreliable. As
such, we anticipate the spectral localizer to prove valuable
for characterizing topological mechanisms unique to
nonlinear, non-Hermitian systems.
Note that while the non-resonant pump on the exciton-

reservoir can effectively broaden the linewidth of the
blueshifted bands, we do not expect this enhanced line-
width to substantially influence our results. Considering a
greater linewidth (for example 0.1 meV21,70) only in the
pumped region due to the reservoir, the reconfigurable
topological routing system discussed here (Figs. 2, 3)
would still have a topological band gap at the probe’s
frequency. In the case where the heterostructure lacks a
bulk spectral gap (Fig. 4), the spectral localizer is still able
to classify the system’s local topology46,69, and thus the
increased linewidth will not affect the identification of
nonlinearly induced topological boundaries. While it is
possible for the exciton-reservoir to populate the polar-
iton state in the gapless heterostructure as there are bulk
reservoir states with the same energy as the polariton
probe, increasing the measured probe’s linewidth, this
coupling will be suppressed as these bulk modes are not
momentum-matched to the polariton edge mode and the
non-resonant pump generally conserves the system’s
translational symmetry along the induced topological
boundary. Moreover, one could circumvent many of these
possible challenges by using alternative tunable methods
for obtaining blueshifts in the polariton bands, such as the
Stark effect via electrical gating71–74, which enables such
blueshifting without creating a broadened exciton reser-
voir, thereby resulting in much narrower effective line-
widths. Similarly, one could also optimize the geometry of
the lattice or the orbitals used to have a better bulk band
dispersion to accommodate the broadened linewidth.
Overall, compared with previous proposals operating at

the telecommunication regime24,25, our approach repre-
sents a significant technological advancement, avoiding
large losses that hinder topological transport and over-
coming the limitations of unscalable multidimensional

dynamic control over each element in a system, and
uniquely enables reconfigurable multi-channel topological
routing, as opposed to single channel routing. Addition-
ally, while reconfigurable topology has been realized one-
dimensional (1D) systems32–34,74, these 1D topological
systems only protect stationary states, and fundamentally
differ from the propagating edge states in 2D Chern
insulators. Looking forward, the possibility of realizing
reconfigurable topological Chern photonic devices pro-
vides a new route to achieving reflectionless non-
reciprocal routing, a capability with applications in a
variety of communication technologies, while also
enabling the exploration of topological aspects in dyna-
mically modulated photonic structures75–77. Furthermore,
as dynamical tuning of a system’s local topology is rooted
in external control of a system’s nonlinear interactions, we
expect nonlinearly induced topological phase transitions
can be achieved in platforms featuring multiwave mix-
ing78–81 through a second illumination source or pertur-
bation, or in other strongly coupled composite systems
such as phonons-polariton lattices with induced phonon-
phonon interactions82.

Methods
Numerical methods and parameter values
The polariton lattice is a honeycomb lattice with lattice

constant a= 2.95 µm (center-to-center distance is
1.7 µm), and rod radius 1 µm. The parameters of the
Hamiltonian are chosen based on Ref21. where the
polariton mass is m= 1.3 × 10−4m0 with m0 the free
electron mass, the spin-orbit coupling strength is βeff ¼
0:2 meVµm2 and the Zeeman coefficient is Δeff ¼
�0:3meV. Without loss of generality, the bare energy of
the exciton-polaritons eE0 � 1 eV21,37–41 has not been
taken into account in the Hamiltonian, as eE0 only
accounts for an energy shift of all the bands. The ribbon
band structure is calculated from the ribbon geometry
with periodic boundary conditions on the left and right
boundaries, and Dirichlet boundary conditions on the top
and bottom boundaries.
To integrate the rate equations given by the driven-

dissipative Gross-Pitaevskii equations [Eqs. (1)–(2)], the
time t is re-scaled to t0 ¼ t=ℏ and a third-order Adams-
Bashforth method is utilized with a time step dt0 ¼
5 ´ 10�3 and grid mesh of dx ¼ dy ¼ 0:151μm. The
dynamical parameters are such that the relaxation rates
for the polariton state and exciton reservoir are γc
= 0.03 ps−1 and γr = 1.5γc, the polariton-polariton and
polariton-exciton interaction strengths are gc = 5 × 10−3

meVµm2 and gr = 10 × 10−3 meVµm2, the amplification
rate of the polariton state due to stimulated scattering of
polariton from the reservoir is R= 3 × 10−4 ps−1µm2.
Note that the radiative lifetime used in our simulations
(γc = 0.03 ps−1, polariton linewidth ΔE ∼ 0.02 meV,
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polariton lifetime τp ∼ 30 ps) arises solely from photon
escape and is typical for high-Q GaAs microcavities and
common detunings. The same intrinsic decay rate was
already employed in the topological lattice experiment of
Klembt et al.21, on which also other parameters in this
manuscript are based. While even longer photonic life-
times of 100− 270 ps in planar cavities with
Q > 100,00083–86 are possible, achieving a linewidth of
0.02 meV in patterned microcavity lattices is also within
experimental feasibility. Shallow etch-and-overgrowth
techniques have enabled measured polariton linewidths
of 0.3 meV and Q-factors of 7500 in patterned polariton
structures with only 32 top distributed Bragg reflectors
(DBRs)87, where these values were obtained under non-
resonant excitation and without optimization for max-
imum Q.
In Fig. 3, the pump is given by a top-hat-like function of

the time-interval t0= 10[ℏ] and t1= 850[ℏ] [see Fig. 3(b)]:

Spump ¼ 1

1þ e�
t�t0
2τt

1� 1

1þ e�
t�t1
2τt

 !
S0;pump;þ1
S0;pump;�1

� �
ð7Þ

with τt= 0.8[ℏ] and pump amplitude S0;pump;± ¼
S0;pump ¼ 2:5 ps−1µm−2. The resonant probe is a con-
tinuous wave source, centered at ðxs; ysÞ [see magenta star
in Fig. 3a]

Sprobe ¼ e
� xs�xð Þ2þ ys�yð Þ2

2τ2xy e�iωsteiksx
S0;probe;þ1
S0;probe;�1

� �
ð8Þ

with τxy= 1 µm, probe amplitude S0;probe;± ¼ S0;probe
= 0.5 ps−1µm−2, resonant frequency ℏωs= 0.35 meV,
and resonant wavevector ks= 0.6[π/a].
In Fig. 4, the probe takes the form

Sprobe ¼ e
� xs�xð Þ2þ ys�yð Þ2

2τ2xy
S0;probe;þ1
S0;probe;�1

� �
e�iωs;1teiks;1x þ e�iωs;2teiks;2x
� � ð9Þ

with τxy = 1 µm, probe amplitude S0;probe;± ¼ S0;probe ¼
0:5 ps−1µm−2, resonant frequencies ℏωs;1 ¼ 0:35meV
and ℏωs;2 ¼ 0:65meV, and resonant wavevectors ks,1=
0.62[π/a] and ks,2= 0.47[π/a].
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