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Quantitative measure of topological protection in Floquet systems through the spectral localizer
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The standard understanding of topological protection from band theory is that a system’s topology cannot
change without first closing the bulk band gap. However, in Floquet systems, this typical definition of topological
protection is one step removed from the experimentally accessible system parameters, as the relationship between
the disorder in a system’s instantaneous Hamiltonian and its Floquet Hamiltonian that defines its topology is not
straightforward. Here, we demonstrate that the spectral localizer framework for classifying material topology
can be applied to Floquet systems using solely the Floquet Hamiltonian and prove that its associated measure of
topological protection can be understood in terms of the disorder across the system’s instantaneous Hamiltonians.
As such, we have derived a quantitative bound on a Floquet system’s topological protection in terms of the
instantaneous system. Moreover, we show the utility of these bounds in both ordinary and anomalous Floquet
Chern insulators.

DOI: 10.1103/3y9q-jpbm

I. INTRODUCTION

In recent years, photonic Chern insulators have excited the
photonics community due to their potential to yield robust
wavelength-scale nonreciprocal devices, such as isolators and
circulators. While early work in realizing photonic Chern
insulators utilized gyro-optical materials [1], shifted ring res-
onators [2,3], and exciton-polariton lattices [4] to break, or
effectively break, time-reversal symmetry, these platforms
have yet to realize the full promise of wavelength-scale
devices for nanophotonics applications, either because the
magneto-optic effect is too weak at telecommunication wave-
lengths [5–7] or because of the need for highly structured
metasurfaces negates the flexibility provided by topological
robustness against fabrication defects. These challenges can
instead be circumvented through the use of alternative ap-
proaches for breaking time-reversal symmetry; for example, it
is possible to realize photonic Chern insulators by periodically
driving an otherwise trivial system [8–13]. In particular, such
topological Floquet systems have been proposed and experi-
mentally demonstrated in helical waveguides array mimicking
a time-periodic Hamiltonian [14–22] or with periodically
pump-driven lithium niobate photonic crystals [23].

However, the characterization of topology in Floquet sys-
tems differs from that in static systems, as the system’s time
evolution must be incorporated into the classification frame-
work. Previously, the Floquet Hamiltonian, derived from the
evolution operator, has been used to classify the topology
of driven or otherwise time-periodic systems using tools
from topological band theory [24]. Nevertheless, although the
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Floquet Hamiltonian can be used to identify topologically
nontrivial modes through its spectrum, topological band the-
ory has been shown to be inadequate to correctly capture the
topology in the topological anomalous Floquet modes, as the
associated Floquet bands have trivial Chern numbers [25]. To
fully characterize the topology in Floquet systems, subsequent
studies have argued that one needs to consider the full time
evolution of the unitary propagator [26–28] or work with the
time-reciprocal space Floquet Hamiltonian [25]. While there
have been studies into the effects of disorder in Floquet sys-
tems [29,30], these methods have yet to analytically resolve
the robustness of topological modes in the presence of both
spatial disorder and variations in the driving protocol. More-
over, the use of a Floquet Hamiltonian to identify a system’s
topology obscures the effects of any topological protection.
Although topological band theory predicts that a system’s
topology can change only if sufficient perturbations are added
to close the associated band gap, the Floquet bands of a driven
system are abstracted from the instantaneous Hamiltonians
that can be controlled in experiments. Thus relating a quantita-
tive definition of topological protection of Floquet systems to
experimentally accessible parameters remains an outstanding
challenge.

Here we propose a framework based on the spectral local-
izer to diagnose the topology in Floquet systems directly from
the Floquet Hamiltonian and derive a bound for a system’s
topological protection in terms of perturbations to the sys-
tem’s associated time-dependent instantaneous Hamiltonian.
As the spectral localizer is able to capture the topology of
any edge modes present in a spectrum, we demonstrate that
the spectral localizer can also correctly identify the topology
of the edge modes present in the Floquet bands, even if the
system is an anomalous Floquet insulator. In particular, we
demonstrate that the correct characterization of the topol-
ogy in Floquet systems is possible solely with the Floquet
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FIG. 1. (a) One period (five subintervals) of the driving protocol.
Two sublattices are highlighted: gray dots (a sites) and red dots (b
sites). Interactions of amplitude J in the first four subintervals are
indicated by lines; there is no hopping in the last subinterval. Over
each subinterval a detuning term ∓� = ∓ π

2T is applied to the a, b
sites, respectively. (Bottom row) As the hopping amplitude increases,
left to right, the system transitions from a trivial to anomalous Chern
insulator. The bulk bands and the corresponding local index CL

(x0,E )

given in Eq. (6) are shown for (b),(c)J = π

2T , (d),(e) J = 3π

2T , and
(f),(g) J = 5π

2T . The local Chern number has been calculating at the
center x0 of a 10 × 10 lattice, with κ = 0.5/(Ta), period T = 1[a.u.],
and lattice constant a = 1[a.u.].

Hamiltonian, contrary to previous claims in the litera-
ture [26–28]. Moreover, the local gap, which is a local and
quantitative measure of the topological protection associated
to the local topological markers obtained from the spectral
localizer, provides insight into possible bounds on the spatial
and temporal perturbation of the periodic driving protocol
to preserve the nontrivial topology of the system. Overall,
our classification framework lays out a general picture of the
topology in Floquet systems that can be directly related to the
spectral localizer framework for static systems [31–36] and
provides insight into how careful the driving protocol should
be in terms of perturbations. We anticipate that the platform
agnostic feature of the Floquet spectral localizer framework,
including its ability to probe local topology and the associated
quantitative measure of topological protection, will be useful
for experimental realizations of periodically driven photonic
systems [14,16,17,22], as well as for driven nonlinear sys-
tems [19–21,23,35].

II. FLOQUET SPECTRAL LOCALIZER

To illustrate how the spectral localizer framework can be
applied to Floquet systems, we consider a standard system
described by a five-step driving protocol on a square lat-
tice [25], as summarized in Fig. 1(a), with coupling strength J
and detuning mass term ∓� applied to the a and b sublattice
sites, respectively. As the coupling amplitude increases, the
system goes through two topological transitions: from a trivial
insulator to a Chern insulator, then from a Chern insulator to
an anomalous Chern insulator, as shown by the existence or
absence of edge states in the projected quasienergy bands in
Figs. 1(b), 1(d), and 1(f). However, the bulk-edge correspon-
dence from topological band theory is seemingly violated,
because the bulk Chern number of the bands derived from the
corresponding Floquet Bloch modes is unable to distinguish

between the trivial and anomalous Chern insulators, with both
band invariants being zero.

Instead, the topology of Floquet systems can be classified
by generalizing the spectral localizer framework [37]. The key
advantage of this approach is that the spectral localizer takes
an operator-based methodology to establishing topology and
as such is able to classify the local topology of any effective
Hamiltonian and predict the existence (or absence) of topo-
logical protected modes regardless of the peculiarity of the
system [31,32,34,36,38–40]. In particular, consider a Floquet
system

i
du
dt

= H (t )u(t ), (1)

characterized by a N × N Hermitian Hamiltonian that is T
periodic H (t + T ) = H (t ). The general solution of Eq. (1)
is given by u(t ) = �(t, t0)u(t0), where �(t, t0) is the uni-
tary evolution operator that can be expressed as �(t, t0) =
P(t, t0) exp[−i(t − t0)HF] such that P(t + T, t0) = P(t, t0)
and P(t0, t0) = I (identity) [41]. In practice, given linearly in-
dependent solutions ui(t ), i = 1, . . . , N of Eq. (1), the unitary
evolution operator (matrix solution) can be written as

�(t, t0) = [u1(t )| . . . |uN (t )] (2)

and, in the special case of n piecewise constant subintervals,
�(t, t0) is simply the product of exponentials

�(tn, t0) = �(tn, tn−1) · · · �(t2, t1)�(t1, t0) (3)

= e−i(tn−tn−1 )Hn · · · e−i(t2−t1 )H2 e−i(t1−t0 )H1 .

For such Floquet systems, the effective Hamiltonian can be
chosen to be the Floquet Hamiltonian HF, obtained from the
evolution operator after one period, i.e., the monodromy ma-
trix �(t0 + T, t0) = exp(−iT HF), as [42]

HF = − log �(t0 + T, t0)

iT
. (4)

The Floquet Hamiltonian is a Hermitian matrix (see Ap-
pendix G), whose spectrum defines quasienergy bands that
are similar to energy bands in the static Hamiltonian, but
unique only up to integer shifts of 2π/T . Compared to the
instantaneous Hamiltonian H (t ), a system’s Floquet Hamilto-
nian HF contains enough information about the periodic time
evolution in its quasienergy bands to enable the identification
of a system’s bulk and edge mode dispersion [24,25].

To diagnose the local topology of a two-dimensional Flo-
quet system in class A [43–46] at specific location (x, y)
and quasienergy E , the spectral localizer combines the Flo-
quet Hamiltonian HF along with the position operators X and
Y as

L(x,y,E )(X,Y, HF)

=
(

(HF − EI ) κ (X − xI ) − iκ (Y − yI )
κ (X − xI ) + iκ (Y − yI ) −(HF − EI )

)
,

(5)

such that the system’s local Chern number is given by

CL
(x,y,E )(X,Y, HF) = 1

2 sig(L(x,y,E )(X,Y, HF)) ∈ Z, (6)

where the signature sig of a matrix is its number of posi-
tive eigenvalues minus its number of negative eigenvalues.
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In Eq. (5), κ > 0 is a hyperparameter used to make units
consistent between the position and Hamiltonian operators as
well as to balance the spectral weight between positions and
energy, and is typically of the order of κ ∼ Egap/L [33,34,47],
where Egap is the relevant spectral gap and L the length of
the finite system considered (see Appendix C for more discus-
sion). Moreover, depending on the system’s dimension and the
local symmetry of its Floquet Hamiltonian HF relative to the
ten Altland-Zirnbauer classes [43–46], the spectral localizer
can take different explicit formulations and the system’s local
topology at specific location and energy is given by either the
signature or the sign of the determinant or the Pfaffian of the
spectral localizer [37,48].

A few technical comments are appropriate concerning the
multivaluedness of the Floquet Hamiltonian in Eq. (4) [49]
and thus of the spectral localizer. In particular, here, we
take the principal branch cut along the negative real axis
so that −i log eiθ = θ for θ ∈ [−π, π ). While nontrivial
topological phases can arise from the interaction of the
Floquet bands across multiple Floquet branches [25], a spe-
cific choice of the branch will not alter the topological
phase. Given a topological band gap around E , that gap
also exists at E + m2π/T with m ∈ Z, i.e., at a different
branch, with the same gap width and topology, as shifting
the spectrum by m2π/T from one branch to another will
not induce any band inversions responsible for changing of
topology. Moreover, for quasienergies far from the branch
cut, the topological characterization is not affected due to
the localness of the spectral localizer. Nevertheless, stan-
dard matrix logarithm algorithms can struggle to correctly
resolve angles when the spectrum of �(t0 + T, t0) lies near
the branch cut. To get around this numerical issue we preshift
the spectrum by �(t0 + T, t0) → �(t0 + T, t0) exp(iET ) =
exp[−i(HF − EI )T ]. This has the effect of rotating the spec-
trum of the (unitary) monodromy matrix around the unit
circle, centering the quasienergy value E on the positive
real axis, opposite the branch cut. Without this shift, one
will observe occasional incorrect readings of the local Chern
number near E = ±π/T for the models considered in this
work.

Overall, as the Floquet spectral localizer [Eq. (5)] can
directly examine the topology in the system’s bulk spectral
gaps, our approach can distinguish between the trivial and the
anomalous phases. Indeed, Figs. 1(c), 1(e), and 1(g) shows
the energy-resolved local Chern numbers CL

(x0,y0,E ) [Eq. (6)]
throughout the quasienergy band, demonstrating in accor-
dance to the other topological Floquet theory [25,28] that the
anomalous Floquet phase is topological, despite having zero
bulk Chern numbers. Notably, the Floquet spectral localizer
is able to probe the local topology over local regions in a
finite lattice, even in aperiodic lattices, as opposed to global
indices [29,30] including the Bott index; a real-space ver-
sion of the bulk-boundary correspondence can also be proved
through the quadratic operator [50], even in the absence of
bulk band gap: at locations where the local index changes,
the quadratic operator guarantees nearby localized topolog-
ical states, as shown in Appendix F. Due to the spectral
shift mentioned above, in practice we set E = 0 in Eq. (5)
since the spectral shift is performed prior to the logarithm in
Eq. (4).

III. TOPOLOGICAL PROTECTION

The spectral localizer framework provides a rigorous treat-
ment for predicting the system’s topological protection. As
the local topological markers constructed from the spectral
localizer are all tied to its spectrum [37], the Clifford local
gap, defined as

μC
(x,E )(X , HF) = min[|spec(L(x,E )(X , HF))|], (7)

gives a quantitative measure of the robustness of the topology;
for a topological phase transition to take place, either as a re-
sult of system perturbations or changing the choice of (x, E ),
the local gap must close, μC

(x,E )(X , HF) = 0. More precisely,
we consider the perturbed Floquet system

i
dupert

dt
= [H (t ) + δH (t )]upert (t ), (8)

where δH (t ) is a perturbation of the instantaneous Hamil-
tonian in Eq. (1) and is taken here to be a Hermitian and
T -periodic matrix. Then the Floquet solution satisfies the
evolution property upert (T ) = exp(−iT HF,pert )upert (0), where
HF,pert is the (Hermitian) perturbed Floquet Hamiltonian. Any
change or perturbation in the Floquet Hamltonian δHF ≡
HF,pert − HF can be related to the local gap by∣∣μC

(x,E )(X , HF,pert ) − μC
(x,E )(X , HF)

∣∣ � ‖δHF‖, (9)

through an application of Weyl’s spectral theorem [35,51],
where ‖ · ‖ is the largest singular value of the matrix. As such,
a topological transition cannot occur as long as

‖δHF‖ < μC
(x,E )(X , HF), (10)

as the perturbation is not strong enough to close the system’s
local gap so that the local topological marker can change its
value.

While Eq. (9) yields a quantitative bound for the system’s
topological protection, this bound requires knowledge of the
perturbed Floquet Hamiltonian, which may be challenging
to determine in experimentally realizable systems. Instead, a
more convenient formulation would work directly with the
instantaneous perturbations δH (t ) in Eq. (8), since these in-
stantaneous perturbations are a measurable quantity that can
be readily modeled or bounded in experiments and realistic
simulations. For example, given a perturbation with known
harmonics (see Appendix D for more details and for other
types of perturbation)

δH (t ) = δ0 +
N∑

n=−N,n �=0

δneiωnt , (11)

with ωn being (integer) multiples of ω = 2π/T , the difference
in the Floquet Hamiltonians is bounded by ρ(δH )

‖δHF‖ � ρ(δH ), (12)

where

ρ(δH ) = ‖δH‖ +
N∑

n=−N,n �=0

‖δn‖, (13)
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including the norm of the average

‖δH‖ =
∥∥∥∥ 1

T

∫ T

0
dt δH (t )

∥∥∥∥. (14)

To avoid any issues coming from the chosen branch cut in
the matrix log of the Floquet Hamiltonian, the bound is de-
rived with no use of the matrix log but directly from the
extended Floquet Hamiltonian defined over all the branches
in the Fourier space, from which the bound is then deduced
for the principal branch.

Thus, for a Floquet system in a given Chern phase at (x, E )
indicated by CL

(x,E )(X , HF),

ρ(δH ) < μC
(x,E )(X , HF) ⇒ CL

(x,E )(X , HF,pert ) = CL
(x,E )(X , HF).

(15)
Notably, as opposed to earlier study [29,30], this inequality
condition represents a predictive and quantitative measure of
the topological robustness that is directly related to the driving
protocol and experimentally accessible.

Intuitively, if the time average of the disorder and the
spectral norm of the harmonics’ perturbation are sufficiently
small, then the topological phase at CL

(x,E )(X , HF) is preserved
in the presence of δH (t ).

Notice that Eq. (15) represents a sufficient condition for
guaranteeing the persistence of a topological (or trivial)
phase; however, in practice we find it is often more stringent
than necessary for uncorrelated perturbations to preserve that
phase.

The derived bound, Eq. (15), serves as a guide for identify-
ing the degree of robustness at various space-energy locations,
relating topological protection of Floquet systems to exper-
imentally accessible parameters. To explore the topological
protection in a toy model system from Fig. 1, we introduce
on-site and coupling uncorrelated disorders drawn from a
normal distribution with mean zero and standard deviation
γ� and γ J , respectively, while keeping δH (t ) Hermitian (see
Appendix E). In waveguide systems, the former represents a
perturbation of self-interaction �, i.e., a variation in the local
refractive index. The latter type of disorder can be used to
model perturbations to the coupling coefficient J , e.g., incon-
sistent coupling strengths between pairs of waveguides. As
the strength of the disorder is increased, quantified by ρ(δH )
[Eq. (12)], the topologically nontrivial region degrades along
the boundaries and ultimately ruptures into smaller domains,
as shown in Figs. 2 and 3. When the disorder strength is
smaller than the local gap of the unperturbed system μclean

0 ≡
μC

(x0,E0 )(X , HF), namely ρ/μclean
0 < 1, the topology of the sys-

tem remains unchanged, thereby demonstrating the validity of
derived bound in Eq. (15). Nevertheless, the persistence of the
nontrivial topology at larger disorder strengths, ρ/μclean

0 > 1,
illustrates that the inequality in Eq. (15) serves as a sufficient,
but not necessary, condition for preserving the topology. Alto-
gether, we have derived a quantitative measure of topological
robustness that can be directly related to perturbations of the
system during the driving protocol and, as such, larger local
gaps in the clean system yield stronger topological robustness,
as shown in Appendix B with the nontrivial Floquet anoma-
lous topology at the π -gap.

FIG. 2. (Top row) One realization of the local 0-gap Chern num-
ber CL

(x,E0 ) (E0 = 0) (6) as the strength of on-site disorder is increased,
left to right, in the anomalous insulator. The magenta line indi-
cates the location of y0. (Bottom row) Ensemble averaged local gap
width (7) at y0, with κ = 0.5/(Ta). Error bars denoting one standard
deviation are included.

IV. CONCLUSION

In conclusion, we have developed a general framework,
based on the spectral localizer, to classify the local topol-
ogy in Floquet systems directly and solely from the system’s
Floquet Hamiltonian and quantify their topological protec-
tion. Although the topology is expressed from a stroboscopic
point of view with the Floquet Hamiltonian, we have derived
a relation between topological protection and perturbation of
the instantaneous Hamiltonian as in the static case and show
that nontrivial topology survives as long as both the time av-
erage of the instantaneous perturbation and the spectral norm
of the harmonics’ perturbation are smaller than the local gap.
In essence, this provides a predictive and quantitative measure
of the topological robustness before which a topological tran-
sition can arise due to disorder.

FIG. 3. (Top row) One realization of the local 0-gap Chern
number CL

(x,E0 ) (E0 = 0) (6) as the strength of coupling disorder is
increased, left to right, in the anomalous insulator. The magenta line
indicates the location of y0. (Bottom row) Ensemble averaged local
gap width (7) at y0, κ = 0.5/(Ta). Error bars denoting one standard
deviation are included.
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Furthermore, as the spectral localizer for Floquet systems
utilized the Floquet Hamiltonian, derived from the mon-
odromy matrix, rather than the Hamiltonian of the governing
equations, the spectral localizer formulation is equation-free
and provides a data-driven approach to probe the topology
[52]. Notably, given a lattice, the monodromy matrix can
be constructed as in Eq. (2) by individually exciting each
site of the lattice and then measuring the phases and ampli-
tudes at each site after one period, which is an experimental
protocol that should readily be applicable in a variety of Flo-
quet systems [9,53,54]. In other words, the spectral localizer
framework provides a system agnostic method to experimen-
tally verify the topology of a Floquet system by computing
the local index, derived from the monodromy matrix, and does
not rely on a specific system’s property, as opposed to more
specialized approaches [30,55,56] based on response theory
specific to particular systems. Looking forward, we anticipate
our operator-based framework should be useful for diagnosing
the topology and its topological robustness from a range of
physical photonic Floquet systems such as waveguiding or
pump-driven systems [14,16,17,19–23].

Note added. Recently, we became aware of a similar pro-
posal posted on a server [57] that also develops a theory of
Floquet topological systems based on the spectral localizer.
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APPENDIX A: OUTPUT OF THE SPECTRAL LOCALIZER

In this section the output of the Floquet localizer is shown
and discussed. These results were generated for the Hamil-
tonian shown in Fig. 1. Here, we consider a 10 × 10 square
lattice with the five-stage driving protocol described in Fig. 1,
with coupling strength J and detuning mass term ∓� applied
to the a and b sublattice sites, respectively, and along with
corresponding quasienergy bands.

The first case is the topological transition in the π -gap
that occurs around JT ≈ 1.1π . The results of the Floquet
localizer are summarized in Fig. 4. Above this critical hopping
amplitude, the local Chern index is CL

(x,Eπ ) = 1 in the π -gap.
To compute this, we choose quasienergy Eπ = π/T and scan

FIG. 4. Topological transition in the π -gap (Eπ = π/T ) as the
hopping amplitude increases. (Top row) The value of CL

(x,Eπ ) relative
to the lattice; white (teal) denotes 0 (1). The magenta line indicates
the probing locations of the bottom row. (Bottom row) Floquet local-
izer spectrum and local index at y0, κ = 0.5/(Ta).

spatial points both inside and outside the lattice. The localizer
indicates a nontrivial topology fills most of the interior lattice
region. The bottom row of Fig. 4 highlights the change in
topology coincides with a change in the signature, defined in
Eq. (6).

As a practical note, in the π -gap we find it useful to rotate
the monodromy matrix by �(T, 0) → �(T, 0) exp(iET I ),
where I denotes the identity matrix, to compute the
quasienergy E for the evolution operator defined in Eq. (4).
Doing this at this stage amounts to performing the spectral
shift in the diagonal of Eq. (5) before the logarithm, rather
than after.

The second topological transition occurs at approximately
JT ≈ 2π in the 0-gap. Typical Floquet localizer results for
this gap are shown in Fig. 5. Above this transition point, the
local Chern number is CL

(x,E0 ) = 1 (E0 = 0) in a region that
fills most of the square lattice. As highlighted in the main
article, the local Chern index is able to identify topologically
nontrivial states where the normal Chern number does not.

FIG. 5. Topological transition in the 0-gap (E0 = 0) as the hop-
ping amplitude increases. (Top row) The value of CL

(x,E0 ) relative to
lattice; white (teal) denotes 0 (1). The magenta line indicates the
probing locations of the bottom row. (Bottom row) Floquet localizer
spectrum and local index at y0, κ = 0.5/(Ta).
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FIG. 6. (Top row) One realization of the local π -gap Chern
number CL

(x,Eπ ) (Eπ = π/T ) (6) as the strength of on-site disorder
is increased, left to right, in the anomalous state. The magenta line
indicates the location of y0. (Bottom row) Ensemble averaged local
gap width (7) at y0, κ = 0.5/(Ta). Error bars denoting one standard
deviation are included.

Examining the local gaps in Figs. 4 and 5, we can say
that the perimeter (interior) of the lattice region is the most
(least) susceptible to a topological transition. The reason is
that the local gap [defined in Eq. (7)] is smallest (largest) near
the edge (bulk) of the lattice. Moreover, the π -gap should be
more resilient to disorder than the 0-gap since μC

(x,Eπ ) is larger
than μC

(x,E0 ) in the bulk region. For the anomalous system at
the central lattice point x0, μC

(x0,Eπ ) ≈ 4μC
(x0,E0 ) and so, relative

to the 0-gap modes, π -gap states are sustained under disorder
that is about four times as strong. Simulations confirm these
intuitions.

APPENDIX B: TOPOLOGICAL PROTECTION
FOR π-GAP STATES

This section complements the study of topology in the
presence of disorder discussed in the main article. Here, the
disorder of the π -gap, rather than the 0-gap, is examined.

The effect of disorder on π -gap states is highlighted in
Figs. 6 and 7 for on-site and coupling disorder, respectively.
In each case, the disorder parameter ρ relative to the gap
width μclean

π ≡ μC
(x0,Eπ )(HF) is given. Note that the disorder

used in these figures is identical to that used in Figs. 2 and 3,
respectively. The overall trend is similar: as the strength of
disorder increases, the topological state deteriorates.

As mentioned before, the π -gap is a wider and more robust
gap than the 0-gap for these parameters. As a result, these
cases tend to be more contiguous and intact in comparison
to their 0-gap counterpart. This can be attributed to the larger
μC

(x,E ) values in the lattice.
The values of disorder chosen here highlight the theorem

in Eq. (15), where topological protection is guaranteed when
ρ/μclean

(x,E ) < 1. Hence, for detuning disorder up to 17% of �

(see Fig. 6, middle column), the π -gap topological state is
preserved. Recall the 0-gap state could be guaranteed up to
approximately 4% of � (see Fig. 2, left column). On the
other hand, the states in the π -gap are preserved for coupling
perturbations up to 2% of J (see Fig. 7, middle column) while

FIG. 7. (Top row) One realization of the local π -gap Chern num-
ber CL

(x,Eπ ) (Eπ = π/T ) (6) as the strength of coupling disorder is
increased, left to right, in the anomalous state. The magenta line
indicates the location of y0. (Bottom row) Ensemble averaged local
gap width (7) at y0, κ = 0.5/(Ta). Error bars denoting one standard
deviation are included.

the 0-gap is stable for approximately 0.5% of J (see Fig. 3,
left column).

The last columns of Figs. 2, 3, 6, and 7 highlight that,
for sufficiently strong disorder ρ/μclean

(x,E ) � 1, the topological
state will break up.

APPENDIX C: SELECTION OF HYPERPARAMETER κ

The value of κ in the Floquet localizer defined in Eq. (5)
should be chosen to balance the quasienergy and spatial
scales. As discussed in [33], an appropriate value is κ ≈
Egap/L, where Egap is the spectral gap width (units of inverse
time) and L is the total length of the lattice (units of length).
Hence, for Floquet problems, this hyperparameter has units of
frequency per unit length.

For the cases shown in Fig. 1, the gap widths are ap-
proximately 0.2(π/T ) � Egap,0 � 1(π/T ) and 0.6(π/T ) �
Egap,π � 1.5(π/T ) for the zero and π -gaps, respectively. For
our lattice, the length scale is L = 4.5a, which suggests a
common value of κ = 0.5/(Ta), for all cases, with T =
1, a = 1; this was the value of κ used to generate all figures in
this paper.

To confirm the appropriateness of this choice of κ , the local
Chern number and gap width for the Floquet Hamiltonian is
computed at different values of κ . The localizer output for κ

between 0.01/(Ta) and 2/(Ta) is shown in Fig. 8. The spatial
sample point corresponds to the center of our finite square
lattice (x0, y0) = (3, 3) and the quasienergy value is at the
center of the zero or π -gap, respectively (see Fig. 1). For each
case considered, the choice of κ = 0.5/(Ta) corresponds to
the appropriate value of the local spectral index.

APPENDIX D: BOUNDING δHF

In this section we derive the bound in Eq. (12) of the main
article.

Recall the definition of the Floquet Hamiltonian, given in
Eq. (4) of the main text, is computed via the matrix loga-
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FIG. 8. (Top row) Local Chern index (6) and (bottom row) local
gap width (7) as a function of parameter κ [in units of 1/(Ta)] for
the Floquet Hamiltonian using � = π

2T . The sample point x0 is at the
center of the lattice.

rithm of the monodromy matrix. It is well known that the
log function is a multivalued function in the complex plane
and a branch cut is introduced to make it single valued. Here
we take the principal branch cut, located along the negative
real axis, between zero and −∞. In the context of Eq. (8) of
the main article, as we move from the clean [δH (t ) = 0] to
disordered problem, the Floquet Hamiltonian changes from
HF to HF,pert. As such, to derive a bound on the perturbation
of the Floquet Hamiltonian, we use the extended Floquet
Hamiltonian defined in the entire Floquet space, contrary to
a single Floquet zone, thus avoiding issues with eigenvalues
crossing branch cuts.

1. Extended Floquet Hamiltonian HF

Each column of the monodromy matrix satisfies the gov-
erning equation [Eq. (1)] of the main article,

i
du
dt

= H (t )u. (D1)

Due to the periodicity in time, with period T , the solutions
have the Floquet-Fourier form

u(t ) = e−iEt
∞∑

m=−∞
ûm eimωt , (D2)

for the temporal frequency ω = 2π/T . The time-dependent
and periodic Hamiltonian matrix is also expanded in a Fourier
series,

H (t ) =
∞∑

m=−∞
Ĥmeimωt , (D3)

with the Fourier coefficients given by

Ĥm = 1

T

∫ T

0
dt e−imωt H (t ). (D4)

Substituting expansions Eq. (D2)–(D4) into the governing
equation (D1), one finds

∞∑
m′=−∞

[
1

T

∫ T

0
dt e−im′ωt H (t )

]̂
um−m′ − mωûm = E ûm (D5)

for m = −∞, . . . ,∞. Notice that the left hand side is a
Fourier version of the Floquet Hamiltonian, referred to here
as the extended Floquet Hamiltonian HF, for which the eigen-
value problem in Eq. (D5) is then expressed as

HFψ̂ = Eψ̂. (D6)

For example, truncating to m = −2, . . . , 2 and m′ =
−2, . . . , 2, the extended Floquet Hamiltonian is given by

HF

=

⎛⎜⎜⎜⎜⎜⎜⎝
Ĥ0 − 2ωI Ĥ−1 Ĥ−2 0 0

Ĥ1 Ĥ0 − ωI Ĥ−1 Ĥ−2 0

Ĥ2 Ĥ1 Ĥ0 Ĥ−1 Ĥ−2

0 Ĥ2 Ĥ1 Ĥ0 + ωI Ĥ−1

0 0 Ĥ2 Ĥ1 Ĥ0 + 2ωI

⎞⎟⎟⎟⎟⎟⎟⎠,

(D7)

with ψ̂ = [̂u−2, û−1, û0, û1, û2]T .
One important difference between Eq. (D6) and Eq. (4) of

the main article is that Eq. (D6) does not involve a logarithm.
As a result, Eq. (D6) and its spectrum are not restricted to
the principal Floquet zone; it is an extended Floquet Hamil-
tonian. The spectrum of Eq. (D6) is infinite, but agrees with
the quasienergies of Eq. (4), obtained from the matrix log,
in the region [−π/T, π/T ). In particular, the spectrum of
the Floquet Hamiltonian HF obtained from the matrix log
can be considered as the spectrum of the extended Floquet
Hamiltonian HF when truncated to a single Floquet zone,
say m = 0 with quasienergies within [−π/T, π/T ). As such,
defining the projection operator P that removes all eigen-
modes whose corresponding eigenvalues do not reside in the
interval [−π/T, π/T ), we have

‖HF‖ = ‖P†HFP‖. (D8)

2. Perturbation δHF in the extended Floquet Hamiltonian

An additional observation is that Eq. (D6) depends di-
rectly on the time-dependent Hamiltonian. Hence a Floquet
Hamiltonian defined similar to Eq. (D6) can be used for the
perturbed problem in Eq. (8) of the main article. Then we can
write down a perturbed eigenvalue problem

HF,pertψ̂pert = Epertψ̂pert, (D9)

with the only difference being that HF,pert replaces H (t ) with
H (t ) + δH (t ). In other words,

∞∑
m′=−∞

[
1

T

∫ T

0
dt e−im′ωt

(
H (t ) + δH (t )

)]̂
um−m′ − mωûm

= Epert̂um (D10)

for m = −∞, . . . ,∞. If we write HF,pert as

HF,pert = HF + δHF, (D11)
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then the perturbation matrix to the clean extended Flo-
quet Hamiltonian HF, denoted δHF, can be defined via the
following equation:

∞∑
m′=−∞

[
1

T

∫ T

0
dt e−im′ωtδH (t )

]̂
um−m′ = δE ûm. (D12)

Analogous to Eq. (D7) (without the mωI terms), δHF can be
written as the sum of Kronecker products

δHF =
∞∑

n=−∞
δĤn ⊗ A−n, (D13)

with

δĤn = 1

T

∫ T

0
dt e−inωtδH (t ) (D14)

and An being the matrices defined with 1’s on the nth diago-
nals and zero elsewhere, e.g., A0 = I ,

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . 0
1 0

1 0
1 0

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

0 1
0 1

0 1

0 . . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Notably, the spectral norm of the perturbation δHF in the
extended Floquet zone is an upper bound of the spectral norm
of the perturbation δHF in the m = 0 Floquet zone:

‖δHF‖ = ‖P†δHFP‖ � ‖δHF‖. (D15)

What remains is therefore to find an upper bound of δHF,
denoted ρ(δH ), i.e.,

‖δHF‖ � ρ(δH ), (D16)

for which the starting point is given by

‖δHF‖ =
∥∥∥∥∥

∞∑
n=−∞

δĤn ⊗ A−n

∥∥∥∥∥
�

∞∑
n=−∞

‖δĤn ⊗ A−n‖

=
∞∑

n=−∞
‖δĤn‖‖A−n‖

� ‖δĤ0‖ +
∞∑

n=1

‖δĤ−n‖ +
∞∑

n=1

‖δĤn‖, (D17)

with

‖δĤ0‖ =
∥∥∥∥ 1

T

∫ T

0
dt δH (t )

∥∥∥∥ = ‖δH‖ (D18)

and where we have used the triangle inequality, ‖A ⊗ B‖ =
‖A‖‖B‖ and ‖An‖ = 1. In practice, we consider a truncation
of An that is arbitrarily large but finite.

Altogether, an upper bound of δHF is therefore given by

‖δHF‖ � ρ(δH ). (D19)

This inequality is significant as it relates the perturbation of a
Floquet Hamiltonian to the perturbation of a time-dependent
Hamiltonian. The explicit detail of the upper bound ρ(δH )
will be derived in the next subsection and will be the main
result of this section to track the robustness of the topology.

3. Upper bound on the perturbation in the extended
Floquet Hamiltonian δHF

In this subsection, we derive the upper bound ρ(δH )
for particular perturbation cases, which corresponds to most
physically realizable Floquet systems.

a. Perturbation with known harmonics driving

We first begin with the case where the perturbation has
known harmonic drivings (δne−iωnt ). As such, the perturbation
is written in terms of a finite sum of harmonics

δH (t ) = δ0 +
N∑

n=−N,n �=0

δneiωnt , (D20)

with ωn being (integer) multiples of ω = 2π/T , δ0 and δn are
constant matrices, and the upper bound is thus given by

ρ(δH ) = ‖δH‖ +
N∑

n=−N,n �=0

‖δn‖. (D21)

b. Perturbation with analytic behavior

Here, we consider a more general case where the perturba-
tion does not have a known harmonic driving. Physically, we
assume that all perturbations are infinitely smooth functions
in time (with all derivatives being continuous) and that the
perturbation has a converging Taylor series. Now, consider
complexifying δH (t ) in terms of the complex variable z =
t − iη. Assume δH (z) is analytic in a strip −η < Im(z) < η,
for η > 0. Using Cauchy’s theorem and the periodic boundary
conditions, the Fourier coefficient δĤn can be written as

δĤn = 1

T

∫ T

0
dt e−inωtδH (t )

= 1

T

∫ T −iη

−iη
dz e−inωzδH (z) (D22)

and

‖δĤn‖ � 1

T

∫ T −iη

−iη
dz‖e−inωzδH (z)‖

� 1

T
e−nωηC

∫ T −iη

−iη
dz

= C e−nωη, (D23)

where C = max{‖δH (z)‖, Re(z) ∈ [0, T ], Im(z) = −η} is the
maximum of the norm of the perturbation on the line z = −iη
in the lower half complex plane. A symmetric argument for
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n < 0 can be formulated in the upper half plane, adding a
factor of 2 to the bound. Altogether,

‖δHF‖ � ‖δH‖ + 2C
∞∑

n=1

e−nωη

= ‖δH‖ + 2C

eηω − 1
(D24)

and the upper bound is expressed as

ρ(δH ) = ‖δH‖ + 2C

eηω − 1
. (D25)

c. Perturbation with piecewise differentiable behavior

Here, we exclude any cases that are pathological which are
thus reasonably nonphysical and assume that the perturbations
exhibit “good” enough behavior. We define Hq

per([0, T ]) to
be a Sobolev space consisting of matrix functions with peri-
odic boundary conditions and q square integrable derivatives.
We define Cq

per([0, T ]) the space of periodic matrix func-
tions with q continuous derivatives. We assume that δH (t ) ∈
Hk

per([0, T ]) ∩ Ck−2
per ([0, T ]), for k � 2, meaning that the per-

turbation δH (t ) is periodic and the derivatives q = 0, . . . , k −
2 are continuous and square integrable, and the k-th derivative
is square integrable.

We consider a (k − 1)th derivative δH (k−1)(t ) which is
piecewise smooth at finitely many points and has bounded
variation. Then the time interval is subdivided into N
subintervals by δH (k−1)(t ) = δH (k−1)

i+1 (t ), t ∈ (Ti, Ti+1), i =
0, . . . , N − 1, T0 = 0, TN = T , and T−1 = TN−1. Next, using
integration by parts, the Fourier coefficient δĤn for n �= 0 can
be expressed as

δĤn = 1

T

1

(−inω)k

N∑
i=1

e−inωTi
(
δH (k−1)

i (Ti ) − δH (k−1)
i+1 (Ti )

)
+ 1

T

1

(−inω)k

∫ T

0
dt e−inωtδH (k)(t ). (D26)

Note that, due to periodicity, δH (q)
N+1 = δH (q)

1 for any

q � 0. Here, δH (q)
i+1(Ti ) = limt→T +

i
δH (q)

i+1(t ) and δH (q)
i (Ti ) =

limt→T −
i

δH (q)
i (t ) denote right and left limits, respectively. In

Eq. (D26), the first term accounts for a jump in perturbation
where a discontinuity exists and the left and right limits do not
match. An upper bound of the nonzero Fourier coefficients can
be found as

‖δĤn‖ � 1

T

1

(|n|ω)k

N∑
i=1

∥∥δH (k−1)
i (Ti ) − δH (k−1)

i+1 (Ti )
∥∥

+ 1

(|n|ω)k
‖δH (k)‖, (D27)

where

‖δH (k)‖ =
∥∥∥∥ 1

T

∫ T

0
dt δH (k)(t )

∥∥∥∥ (D28)

is the time average of the kth time derivative of the perturba-
tion δH (k)(t ).

Plugging Eq. (D27) into Eq. (D17), the upper bound of
δHF now reads

‖δHF‖ � ‖δH‖ + 2

( ∞∑
n=1

1

nk

)

× 1

ωk

1

T

N∑
i=1

∥∥δH (k−1)
i (Ti ) − δH (k−1)

i+1 (Ti )
∥∥

+
( ∞∑

n=1

1

nk

)
2

ωk
‖δH (k)‖. (D29)

The second and third terms converge provided k > 1. That
is, provided δH (1)(t ) is an integrable function (jumps are
finite valued), the bound in (D29) converges. If k � 1, then
the series does not converge. An example of a problematic
function is a piecewise constant perturbation where k = 1.

However, in physically relevant systems, jumps in the
perturbation can always be assumed to be smoothed out in
experiment and therefore continuous. As such, jumps between
δHi(Ti ) and δHi+1(Ti ) can be regularized by interpolating the
jump, for example, with a linear spline within the interval
[Ti − h, Ti + h], for 0 < h � T ,

δHi,i+1(t ) = δHi(Ti )

+ δHi+1(Ti ) − δHi(Ti )

2h
(t − Ti + h), (D30)

where

δHi,i+1(Ti − h) = δHi(Ti ), (D31)

δHi,i+1(Ti + h) = δHi+1(Ti ), (D32)

δHi,i+1(Ti ) = δHi(Ti ) + δHi+1(Ti )

2
. (D33)

Notably, this is enough for k = 2 in Eq. (D29) with,

δH (1)
i,i+1(t ) = δHi+1(Ti ) − δHi(Ti )

2h
. (D34)

Altogether, the local regularized Hamiltonian perturbation is

δH (t ) =
⎧⎨⎩δHi(t ), t ∈ (Ti−1 + h, Ti − h),

δHi,i+1(t ), t ∈ [Ti − h, Ti + h],
δHi+1(t ), t ∈ (Ti + h, Ti+1 − h),

(D35)

denoting a continuous function with a now-removed jump at
Ti. Note that, here, the specific details of the interpolation
are not important, except removing the diverging terms, and
the interpolation can be chosen to be as smooth as possible
to avoid contributing to additional terms in the upper bound.
After regularizing Eq. (D29), the bound in Eq. (D29) is valid
for k = 2.

While utilizing the highest k possible might be preferable,
as tighter upper bounds are obtained with increased k in the
1/nk terms, only a closed form of the series is known so far
for k = 2p even, involving the Bernoulli numbers B2p

ζ (2p) =
∞∑

n=1

1

n2p
= (−1)p+1 B2p(2π )2p

2(2p)!
, (D36)
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FIG. 9. Ensemble average of the local Chern index (6) in the
(top row) 0-gap and (bottom row) π -gap for the anomalous Floquet
Hamiltonian with on-site disorder. To compute these averages, 1000
realizations were taken. The values taken are (y0, κ ) = [3, 0.5/(Ta)]
and (top) E0 = 0, (bottom) Eπ = π/T . The top (bottom) row corre-
sponds to the case shown in Fig. 2 (6).

yielding ζ (2) = π2/6 ≈ 1.65, ζ (4) = π4/90 ≈ 1.1, etc. As
such, k = 2 is sufficient for an upper bound, meaning

ρ(δH ) = ‖δH‖ + T

12

N∑
i=1

∥∥δH (1)
i (Ti ) − δH (1)

i+1(Ti )
∥∥

+ T 2

12
‖δH (2)‖. (D37)

APPENDIX E: DISORDERED HAMILTONIAN

In the main article, we considered topology in the presence
of uncorrelated disorder. For each case, random normally dis-
tributed real numbers with mean zero and variable standard
deviation were used.

We exemplify perturbation with known harmonics, which
is typical for Floquet systems using photonic waveguides. As
such, the perturbation reads

δH (t ) = 3
2δ0 + 1

2δ10 cos(10ωt ) (E1)

and the relevant upper bound is given by

ρ(δH ) = 3
2‖δ0‖ + 1

2‖δ10‖. (E2)

Two types of disorder for δH (t ) were considered: on-site
and coupling, meaning the entries of the matrices δ0 and
δ10 are populated accordingly, as explained in the following
paragraphs.

To create on-site disorder, random numbers of the form
r j are added to each site along the diagonal of δ0 and δ10.
These random values are chosen with mean zero, 〈r j〉 = 0,

and standard deviation
√

〈r2
j 〉 = γ�, scaled relative to the

detuning mass term �. The value of γ is the same for both
δ0 and δ10. The unperturbed [δH (t ) = 0] case corresponds to
γ = 0. The three columns in Figs. 2, 6, and 9 correspond to
γ = 0.04, 0.17, and 3.5, respectively. Relatively large values
of γ are taken since the system is quite robust to on-site
disorder.

FIG. 10. Ensemble average of the local Chern index (6) in
the (top row) 0-gap and (bottom row) π -gap for the anomalous
Floquet Hamiltonian with coupling disorder. To compute these av-
erages, 1000 realizations were taken. The values taken are (y0, κ ) =
[3, 0.5/(Ta)] and (top) E0 = 0, (bottom) Eπ = π/T . The top (bot-
tom) row corresponds to the case shown in Fig. 3 (7).

A few typical average local Chern numbers are shown in
Fig. 9. In each figure, the top and bottom error bars, denoted
by blue dashed lines, are defined by

min

{
1,

〈
CL

(x,E )

〉 + √〈(
CL

(x,E ) − 〈
CL

(x,E )

〉)2〉}
, (E3)

max

{
0,

〈
CL

(x,E )

〉 − √〈(
CL

(x,E ) − 〈
CL

(x,E )

〉)2〉}
, (E4)

respectively, where
√

〈(CL
(x,E ) − 〈CL

(x,E )〉)2〉 is the standard de-
viation. The reason for this definition, rather than just the
standard deviation, is to avoid the suggestion that the local
Chern number is anything other than 0 or 1 here. A symmetric
error bar using only the standard deviation can suggest either
CL

(x,E ) < 0 or CL
(x,E ) > 1, which it does not. As the disorder

increases, the probability of finding a topologically nontrivial
state inside the lattice decreases. In addition to the average
value decreasing to zero, the variation (error bar width) in-
creases.

Next, consider the coupling disorder. To create this, ran-
dom numbers are added to the nonzero off-diagonal terms of
δ0 and δ10 in a symmetric fashion to preserve the Hermitian
nature of δH (t ). Here we take random numbers r j with mean

zero, 〈r j〉 = 0, and standard deviation
√

〈r2
j 〉 = γ J , so that

disorder strength is scaled relative to the hopping amplitude
J . Each coupling is perturbed with a different random num-
ber. The three columns in Figs. 3, 7, and 10 correspond to
γ = 0.005, 0.02, and 0.18, respectively.

Ensemble averages for the local Chern index are shown
in Fig. 10 for the 0-gap (E0 = 0) and π -gap (Eπ = π/T ).
Again, the top and bottom error bars are defined by (E3)
and (E4), respectively, to avoid the suggestion that they are
greater than 1 or less than 0. Overall, the trend is similar to the
on-site disorder: degradation of the chiral state as the intensity
of disorder increases. That is, 〈CL

(x,E )〉 → 0 as the disorder
increases. We note the deterioration of the anomalous topolog-
ical state from coupling disorder appears to occur earlier than
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that of the on-site disorder. This would suggest that careful
fabrication of the coupling coefficients in waveguide arrays is
crucial for stable systems.

APPENDIX F: BULK-BOUNDARY CORRESPONDENCE
IN THE SPECTRAL LOCALIZER FRAMEWORK

1. Bulk-boundary correspondence through the composite
quadratic operator

In this section, we show how a bulk-boundary correspon-
dence can be derived in the spectral localizer framework,
guaranteeing the existence of boundary states at the interface
between locally topological trivial and nontrivial regions.

The appearance of boundary states can be proven through
another composite operator, the quadratic operator Q [50].
For a two-dimensional system with position operators X and
Y , and effective Hamiltonian HF, the quadratic operator is
defined as

Q(x,y,E )(X,Y, HF)

= κ2(X − xI )2 + κ2(Y − yI )2 + (HF − EI )2. (F1)

The key reason to introduce this quadratic operator Q is that
its associated quadratic local gap

μ
Q
(x,E )(X , HF) = √

min[spec(Q(x,E )(X , HF))] (F2)

bounds the location and localization relative to the choice of
(x, E ) of an approximate eigenstate across the input operators
of Q, namely here the X , Y , and HF operators. In particular, the
quadratic gap μ

Q
(x,y,E ) at position (x, y) and energy E provide

information about how much variance in X , Y , and HF can
be for a state centered (in a sense of the expectation value) at
(x, y, E ) [50](

μ
Q
(x,y,E )(X,Y, HF)

)2 = min
φ∈H

{
κ2�2

φ[X ] + κ2
(
�1

φ[X ] − x
)2

+ κ2�2
φ[Y ] + κ2

(
�1

φ[Y ] − y
)2

+�2
φ[HF] + (

�1
φ[HF] − E

)2
}
, (F3)

where H is the system’s Hilbert space, and �2
φ[M] =

〈φ|M2|φ〉 − 〈φ|M|φ〉2 and �1
φ[M] = 〈φ|M|φ〉 correspond to

the variance and mean value of the operator M, respectively.
Notably the difference in the local gap obtained from the
spectral localizer, μC, and the quadratic operator, μQ, are
bounded as [50]∣∣∣(μC

(x,y,E )(X,Y, HF)
)2 − (

μ
Q
(x,y,E )(X,Y, HF)

)2
∣∣∣

� κ‖[X, HF]‖ + κ‖[Y, HF]‖. (F4)

Altogether, from Eq. (D4), a bulk-boundary correspondence
naturally appears: at locations where the local topological
invariant changes, the Clifford local gap μC must be zero,
guaranteeing that the quadratic local gap μQ is small and
therefore that there must be a nearby state of the system.

2. Quadratic operator for identifying localized states

As the local topological invariant in the spectral localizer
framework can be defined irrespective of a well-defined bulk

FIG. 11. (a) Local Chern number CL
(x,E0 ) for the anomalous Flo-

quet topological phase with coupling J = 5π/2T and at the center
of the π -gap (here recentered to be at E = 0); the white (teal) region
denotes 0 (1). (b),(c) Clifford local gap μC

(x,E0 ) and quadratic local

gap μ
Q
(x,E0 ) for this system. (d) Local density of states (LDOS) at

E = 0. (e) Spectrum of this system with open boundary conditions.
(f) Projected density of states PQ(E ). (g),(h),(i) Spatial distribution
of |φμ〉 with a probe at (x0, E0), (x1, E1), and (x0, E1), respectively.
The localizer and quadratic operators have been calculated with
κ = 0.2/(Ta), period T = 1[a.u.] and lattice constant a = 1[a.u.],
over a 28 × 28 lattice.

band gap [31,34,36], the latter means boundary states can
also be predicted even if they are degenerate with the bulk
spectrum. Here we show that while a real-space version of
the bulk-boundary correspondence can be proved using the
quadratic operators in the spectral localizer framework, the
quadratic operator also provides a way to identify boundary
states, including boundary states that are degenerate with bulk
states [58,59].

a. Boundary states

To begin, let us first consider the anomalous Floquet topo-
logical phase with coupling J = 5π/2T as in Fig. 1(f) in
the main text, but with a 28 × 28 lattice. For this set of
parameters, the system has well-defined bulk band gaps in
the quasienergy bands and the spectrum of the system with
open-boundary conditions is plotted in Fig. 11(e), where here
the π -gap is centered at zero as explained in Appendix A. In
that π -gap, the system is shown to be topologically nontrivial
with nonzero local Chern numbers across the lattice as shown
in Fig. 11(a), thus resulting in topological edge states at the
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boundary of the lattice due to bulk-boundary correspondence.
Because of the well-defined bulk band gap, those topological
edge states can be easily visualized through the local density
of states (LDOS) as shown in Fig. 11(d) at E = 0.

Nevertheless, as explained above, the local gap is also
related to the location and localization of an approximate
eigenstate of X , Y , and HF. Here because the local Chern
number changes values around the boundary of the lattice,
the Clifford local gap μC must also be zero at those local
invariant changes, as shown in Fig. 11(b). As the difference
between the quadratic gap μQ and the Clifford gap μC is
bounded [see Eq. (F4)], the quadratic gap must in turn have
dips around the boundary of the lattice [see Fig. 11(c)]. Using
Eq. (F3), we can see that the eigenstate |φμ〉 of the quadratic
operator associated to the quadratic local gap μ

Q
(x,y,E ) at some

position (x, y) and energy E , namely the smallest eigenvalue
of Q(x,y,E )(X,Y, HF), corresponds to some states with minimal
variance in X , Y , and HF. In other words, the spatial distribu-
tion of the eigenstate |φμ〉 shows that it is localized around
(x, y) with energy around E and the “projected” density of
state (projected DOS) defined as

PQ(E ) =
∑

i

|〈ψi|φμ〉|2δ(E − Ei ), (F5)

with |ψi〉 an eigenvector of HF with eigenenergy Ei, gives
the distribution across the eigenstate of the system’s Floquet
Hamiltonian HF. For example, with a probe at a position on the
boundary of the lattice x0 with an energy at the center of the
π -gap E0, the spatial distribution of |φμ〉 plotted in Fig. 11(g)
clearly shows the topological edge state at the boundary of
the lattice around x0 with some contribution from the other
topological edge states in the π -gap around E0, as illustrated
by PQ(E ) in Fig. 11(f). Similarly, with a probe in the bulk
of the lattice x1 and energy close to the bulk bands E1 display
the bulk modes around x1 [Fig. 11(h)] with contribution from
the other bulk modes around E1 [Fig. 11(f)]. However, if we
look at a position on the boundary of the lattice x0 with an
energy E1 close to both the bulk and edge bands, we can see
the contribution of both bulk and boundary modes both in the
spatial distribution of |φμ〉 [Fig. 11(i)] and more quantitatively
in the projected DOS PQ(E ) [Fig. 11(f)].

b. Boundary state resonances

When topological boundary states are degenerate with the
bulk states, the quadratic operator can also be used to identify
those states, which are here referred to as boundary state
resonances as they are leaking into the bulk of the system. To
provide a specific system that exemplifies such a case, let us
consider a system that is in an anomalous Floquet topological
phase with coupling J = 5π/2T as in the previous subsection,
but with disorder on the couplings, with standard deviation
0.85J , everywhere except in the bottom left of the lattice. Be-
cause of the strong perturbation considered, several domains
with different local topology appear throughout the lattice as
classified by the local Chern number at E = 0 in Fig. 12(a),
with one large topological domain in the bottom-left part of
the lattice which corresponds to the region of no disorder.
From bulk-boundary correspondence, topological boundary
states are thus expected to appear at the interface between all

FIG. 12. (a) Local Chern number CL
(x,E0 ) for the anomalous Flo-

quet topological phase with coupling disorder around J = 5π/2T ,
with standard deviation 0.85J , and at the center of the π -gap (here
recentered to be at E = 0); the white (teal) region denotes 0 (1).
(b),(c) Clifford local gap μC

(x,E0 ) and quadratic local gap μ
Q
(x,E0 ) for

this system. (d) Local density of states (LDOS) at E = 0. (e) Spec-
trum of this system with open boundary conditions. (f) Projected
density of states PQ(E ). (g),(h),(i) Spatial distribution of |φμ〉 with a
probe at (x0, E0), (x1, E1), and (x0, E1), respectively. The localizer
and quadratic operators have been calculated with κ = 0.2/(Ta),
period T = 1[a.u.] and lattice constant a = 1[a.u.], over a 28 × 28
lattice.

of these topological and trivial domains. However, the spec-
trum of the system [Fig. 12(e)] is gapless in a sense that there
is no clear energy range that only supports boundary states,
such that the boundary states are degenerate with the bulk
states. Therefore, an approach using the LDOS to visualize
those boundary states will fail as those boundary states are
also leaking into the bulk, as shown in Fig. 12(d).

Yet, looking at the associated local gap μC [Fig. 12(b)]
and the quadratic local gap μQ [Fig. 12(c)] provides insight
about the location of localized states at the corresponding
energy E (here E = 0). For example, a probe at the bottom-
left corner x0 reveals a boundary state along the boundary
of the lattice [Fig. 12(g)] with contributions spanning several
modes around E = 0 [Fig. 12(f)], resembling the example
case of the previous subsection [Figs. 11(f) and 11(g)]. This
is, in fact, expected as a zoom-in of this part of the lattice
looks like the system with no disorder, resulting in the spatial
distribution and projected DOS of |φμ〉 behaving as in the
clean system with a defined bulk band gap. Meanwhile, a
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probe located away from topological interfaces and in the
bulk where there is disorders x1 reveals bulk states present
at E = 0 [see Figs. 12(h) and 12(f)]. Notably, if we look
at the position on a topological interface with the presence
of disorders x2, the spatial distribution of |φμ〉 reveals the
presence of the localized boundary state resonance [Fig. 12(i)]
and the projected DOS shows a slightly different curve than
the bulk states coming form the boundary state [Fig. 12(f)],
demonstrating the contribution from both the bulk and bound-
ary modes, namely leaky boundary states. Overall, at a given
energy, the eigenstate |φμ〉 associated to the quadratic local
gap μQ provides an indirect method to visualize the boundary
states if the probe is at the boundary, as well as a quantitative
measure of the system’s eigenstate contribution.

APPENDIX G: USEFUL PROOFS ABOUT FLOQUET
SYSTEMS

Consider the general solution of Eq. (1) given by u(t ) =
�(t, t0)u0, where the principal matrix solution satisfies

�̇(t, t0) = −iH (t )�(t, t0), �(t0, t0) = I.

The columns of �(t, t0) correspond to linearly independent
solutions of (1),

�(t, t0) = [u1(t )|u2(t )| · · · |un(t )].

The Hamiltonian H (t ) is assumed to be Hermitian, H (t )† =
H (t ), where † denotes the transpose complex conjugate.

Lemma G1. If H (t ) is Hermitian, then the principal matrix
solution �(t, t0) is unitary.

Proof. Consider two linearly independent solutions of
Eq. (1), ua(t) and ub(t ), such that

u̇a,b(t ) = −iH (t )ua,b(t ).

These solutions form arbitrary columns of �(t, t0). Then

〈u̇a|ub〉 = i〈ua|H (t )ub〉
and

〈ua|u̇b〉 = −i〈ua|H (t )ub〉.
Combining these reveals that d

dt 〈ua|ub〉 = 0 for all t or
〈ua(t )|ub(t )〉 is constant. We set these to be orthogonal, i.e.,
〈ua(t )|ub(t )〉 = 0. Since these were arbitrary columns of the
matrix solution, this implies that �(t, t0) is unitary for all
time, i.e., �(t, t0)†�(t, t0) = I . �

The principal matrix solution of any Floquet system can be
expressed as [41]

�(t, t0) = P(t, t0) exp[−i(t − t0)HF], (G1)

where exp denotes the matrix exponential. Since � is unitary,
the periodic matrix P is unitary and the matrix HF is Hermi-
tian.

Lemma G2. If H (t ) is Hermitian and periodic, then P(t, t0)
is unitary and HF is Hermitian.

Proof. Evaluation of Eq. (G1) at t = t0 + T reveals that the
monodromy matrix is unitary

‖ exp(−iT HF)‖ = ‖�(t0 + T, t0)‖ = 1,

since P(t0 + T, t0) = I and �(t0 + T, t0) is unitary. As a re-
sult, the Floquet multipliers (eigenvalues) of exp(−iT HF) lie
on the unit circle. Hence the effective Hamiltonian matrix
HF is Hermitian. If two square matrices A,C are unitary and
A = BC, then B is also unitary. As a result, the periodic matrix
P is unitary and P(t, t0)−1 = P(t, t0)†. �
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