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BAND STRUCTURE

The full 3D band structure for the chiral woodpile structure discussed in the main text is plotted in Fig. S1 (a).
The two bands that make up the Weyl point are well-separated in frequency along the Y − Γ−X directions but are
very close in frequency along Γ− Z. We perform convergence tests in MPB that confirm that the degeneracy only
occurs at Γ. This structure also has a charge −2 Weyl point at R between bands 3 and 4 which lies below the light
line of air. Fig. S1 (b) shows the band structure for the same structure but with εrods = 12. The charge ±2 Weyl
points remain at Γ and R points of the Brillouin zone, protected by screw symmetry.

FIG. S1. (a) The full band structure for the PhC fabricated in the experiment with the following parameters: dielectric constant
of rods (εrods) = 2.31, rod width (w) = 0.175a and rod height (h) = 0.25a, where a is the lattice constant in all three directions.
The inset contains the bands in the vicinity of Γ. The charge ±2 Weyl points are marked with a blue and red circle respectively.
(b) Band structure showing bands 1 to 8 of the PhC for the same values of w and h but εrods = 12.

CALCULATION OF BERRY PHASE

As discussed in the main text, we numerically calculate the topological charge (Chern number) associated with the
Weyl points at Γ and R of the chiral woodpile PhC. Here we describe that algorithm, following Ref. [1]. Consider
a closed contour C in momentum (k) space discretized into N points (k1, ...,kN−1) such that kN = k1. The total
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phase acquired by a state undergoing adiabatic transport along this loop is numerically calculated by

θB(C) = −Im ln

(
N∏
i=1

〈ψ(ki)|ψ(ki+1)〉
|〈ψ(ki)|ψ(ki+1)〉|

)
(S1)

θB(C) is a manifestly gauge-invariant quantity and is called the Berry phase. In our case, the states in a 3D PhC are
magnetic field eigenmodes of the Maxwell operator [2] that satisfy

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2
H(r) (S2)

and the inner product between two such eigenmodes is defined as

〈ψ1|ψ2〉 =

∫
H∗

1(r) ·H2(r)d3r (S3)

This phase is calculated on circular contours that lie on constant kz planes as shown in Fig. S2 (b). The topological
charge of the Weyl point is the number of times the Berry phase winds as a function of kz.

FIG. S2. (a) Closed contours in k-space discretized into N points. (b) The Berry phase is calculated on circular contours that
enclose the Weyl point. Each contour lies on a constant kz plane. (c), (d) Berry phase vs. kz plots for charge +2 and charge
−2 Weyl points at Γ and R respectively.

To show that the Weyl points are indeed symmetry protected and continue to exist even at low contrast, we start
with a high contrast version of our PhC and plot the band structure and Berry phase as the contrast is smoothly
lowered. An animated version of these plots can be found in the supplementary material.

COUPLING COEFFICIENTS BETWEEN INCIDENT PLANE WAVES AND PHC BLOCH MODES

To understand the relationship between the observed spectral features and the bulk bands, we calculate coefficients
that measure the polarization of Bloch modes. For this, we consider plane waves with s- and p- polarizations incident
along the Γ−X direction on the PhC-air interface and define the polarization coupling coefficients Cs and Cp and
mode coupling index κ [3–6]

ηp,k,n =

∣∣∫∫∫ ŷ ·Hk,n(x, y, z)dxdydz
∣∣2

V
∫∫∫
|Hk,n(x, y, z)|2 dxdydz

(1)

ηs,k,n =

∣∣∫∫∫ (cos θx̂− sin θẑ) ·Hk,n(x, y, z)dxdydz
∣∣2

V
∫∫∫
|Hk,n(x, y, z)|2dxdydz

(2)

κ = ηs,k,n + ηp,k,n; Cs/p =
ηs/p,k,n

κ
(3)

where Hk,n(x, y, z) is the magnetic field eigenmode of the PhC with momentum k and band index n, θ is the
angle of incidence along Γ−X and all integrals are calculated over a unit cell with volume V . κ goes from 0 to 1
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and measures the strength of coupling to a plane wave of any arbitrary polarization while Cs and Cp measure the
overlap between s- and p-polarized plane waves and the Bloch modes. Large reflection for a certain range of angles
and frequencies in the absence of band gaps can then be thought of as either a polarization mismatch between the
incident wave and the Bloch mode, indicated by small Cs/p, and/or inefficient mode in-coupling, indicated by small
κ.

In Fig. S3, we analyze a slice of the reflection spectrum that corresponds to Bloch modes with momenta k =
(0.1, 0, kz) (2π/a). As previously stated, the band structure weighted by the coupling coefficients shows that there
are wavelength ranges where the states are nearly completely s- or p- polarized and/or have small mode coupling
index. We particularly point out the wavelength ranges ∼ 4.65− 4.8 µm in Fig. S3 (b) and ∼ 5.0− 5.15 µm in Fig.
S3 (d) (highlighted in blue) which coincide with the sharp increases in reflection. Moreover, the boundary separating
the reflecting and transmissive region coincides with band 4 at kz = 0 in s-polarization and band 5 at kz = 0 in
p-polarization plots, which are the Weyl bulk bands of interest. Thus the signatures of both bands and the Weyl
point are present in simulations and measurements done with 45◦ polarization.

FIG. S3. (a), (c) Angle-resolved RCWA simulation of reflection spectra for p and s polarizations respectively as shown in Fig.
3 of the main text. (b), (d) Reflection spectrum along the cut shown by the dashed line in (a) and (c) and the band structure
showing bands 3 to 12 for k = (0.1, 0, 0) to (0.1, 0, 0.5) (2π/a). The color of the circular dots indicates the value of Cs/p for the
corresponding Bloch modes and their size is proportional to the value of κ.
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ADDITIONAL MEASUREMENTS

To provide additional evidence for the robust symmetry protection of the Weyl point, we fabricate and measure
another sample with significantly different parameters: rod width of 300 nm and lattice constant of 2.1 µm. Fig S4
shows a SEM image of the sample, along with its transmission spectra. In this case, the transmission measurement
was performed using the Hyperion 3000 microscope attached to the FTIR with the in-coupling Cassegrain objective
covered except for a small pinhole of 2 mm diameter. This resulted in better k-space resolution for the measurement.
We see in Fig. S4 that the charge +2 Weyl point continues to exist, even for these different parameters, and now
resides at a wavelength of 2.4 µm.

FIG. S4. (a) A SEM image of the chiral woodpile PhC with rod width of 300 nm and lattice constant 2.1 µm. (b) Experimentally
measured transmission spectrum in the Γ − X direction for the PhC shown in (a), overlaid with the bands calculated from
MPB shown using black dotted lines.
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