
Acousto-optic finite-difference frequency-domain algorithm for first-principles simulations of 

on-chip acousto-optic devices 

Supplementary Material 

 

 

Yu Shi1, Alexander Cerjan1, and Shanhui Fan1, a) 

 

1Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, 

California 94305, USA 

a) Author to whom correspondence should be addressed. Electronic email: 

shanhui@stanford.edu. 

 

  



Part 1. Explicit numerical formalism in two-dimensions 

In Part 1 of the Supplementary Material, we present the details of the two-dimensional 

acousto-optic FDFD algorithm for the transverse-electric (TE) polarization, where the electric field 

𝐸𝑧  couples to the acoustic displacement fields 𝑈𝑥  and 𝑈𝑦 . This formalism is used for the 

simulation examples shown in Figs. 3 and 4.  

To start, we recall the general first-principles equations for both optical and acoustic waves. 

For an optical wave, the electric field at frequency 𝜔 is described by  
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and for an acoustic wave, the mechanical displacement field at frequency Ω is described by  
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In two-dimensions, we adopt a discretization grid as shown in Fig. S1(a). In each ij cell, 

where i and j are the indices in the x and y directions respectively,  𝐸𝑧 is located at the origin, 𝑈𝑥(𝑦) 

is located at the half point along the 𝑥(𝑦) direction, and the material parameters are specified at 

the center of the cell.  



 

Figure S1. (a) Illustration of the placement of the fields and material parameters inside the 

discretized ij cell. (b) Schematics of an arbitrary structure. (c) Illustration of the surface-normal 

elements 𝜎𝑦 and 𝜎𝑥 of the arbitrary structure in (b).  

 

To construct the finite difference equations of Eqns. (S1.1) and (S1.2) for 𝐸𝑧, 𝑈𝑥, and 𝑈𝑦, 

we first introduce a few operators. In the equations below, 𝜕𝑤
𝑓

 and 𝜕𝑤
𝑏  denote a forward and 

backward derivative operator in direction 𝑤, respectively. Likewise, 𝑉𝑤
𝑓
 and 𝑉𝑤

𝑏 denote a forward 

and backward averaging operator, respectively. For a given material parameter, a superscript with 

< 𝑤 > denotes that the parameter is being averaged in the 𝑤 direction. This is to ensure that the 

parameters are co-located with the field components that they act on. With these notations, Eqn. 

(S1.1) for an electric field 𝐸𝑧,𝑚 at frequency 𝜔𝑚 can be written as:  
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and Eqn. (S1.2) becomes:  
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In Eqns. (S1.3) and (S1.4), we assume that all the field, material quantities, and operators have 

been discretized, and the fields are reshaped into a column vector. For the acoustic parameters, we 

adopt the Voigt index notation such that in 𝑐𝐼𝐽, 𝐼 and 𝐽 are index from 1 to 6, where 1 = 𝑥𝑥;  2 =

𝑦𝑦;  3 = 𝑧𝑧;  4 = 𝑦𝑧 = 𝑧𝑦;  5 = 𝑥𝑧 = 𝑧𝑥;  6 = 𝑥𝑦 = 𝑦𝑥. Furthermore, the terms 𝑐𝐼𝐽 is a complex 

tensor that contains both the stiffness tensor and the viscosity tensor: 𝑐𝐼𝐽 ≡ 𝑐𝐼𝐽 + 𝑖Ω𝜂𝐼𝐽. To shorten 

the operators, Eqns. (S1.3) and (S1.4) can be written as:  
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To include the functional forms of the coupling between 𝐸𝑧, 𝑈𝑥, and 𝑈𝑦, we first identify the 

constituents of 𝑃𝑧,𝑚, 𝐹𝑥, and 𝐹𝑦 just like that of Eqns. (7) and (17):  
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First, we expand the terms in Eqn. (S1.7). This term is the same as Eqn. (13) of the 

manuscript. With the polarization that we chose in our paper, the photo-elastic coupling tensor 

only happens through the 𝑝12 ≡ 𝑝𝑧𝑧𝑥𝑥 = 𝑝𝑧𝑧𝑦𝑦 element of the tensor. Thus, we have:  
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For moving boundary considerations, since 𝐸𝑧 is transverse to all material boundaries that 

lie in the 𝑥 − 𝑦 plane, Eqn. (14) contains only one term, namely  
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With the boundary definition of 𝛔𝑠 (an example of which is shown in Fig. S1(c) for the structure 

in Fig. S1(b)), Eqn. (15) becomes:  
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Together, Eqns. (S1.3), (S1.9), and (S1.11) describe the optical equation of motion.  

Now, we treat the acoustic wave equation and expand the terms in Eqn. (S1.8). In the 𝑥 

direction, the electrostrictive body and surface forces in Eqn. (18) can be written as:  
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The radiation pressure term in Eqn. (20) can be written as:  
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Similarly, the forces in the 𝑦 direction can be written as:  
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By combining all the constituents of 𝑃𝑧,𝑚, 𝐹𝑥, and 𝐹𝑦 into Eqns. (S1.5) and (S1.6), we obtain 

the discretized dynamic equations as described in Eqns. (16) and (21). Explicitly, with the choice 

of polarization in two-dimensions, they can be written as:  
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To solve Eqns. (S1.16) and (S1.17), we can follow the techniques discussed in Sec. III of the 

manuscript by constructing the nonlinear system of equations and its Jacobian, and apply Newton’s 

update equations to iteratively obtain a self-consistent set of equations.  

  



Part 2. The explicit expression of the Jacobian operator 

In Part 2 of the Supplementary Material, we present the general expression of the Jacobian operator 

term by term. The results are used for the Newton update equations in Eqns. (28) and (29). Recall 

that Eqn. (27) states that  
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where �̂� is given in Eqn. (24), and the constituents of 𝜕𝐂/𝜕𝐯 are given in Eqn. (26). To derive the 

𝜕𝐂/𝜕𝐯 term of Eqn. (S2.1), we first define an all-ones vector as ˆ ˆ ˆ  1 x y z . With this notation, 

and by setting 𝐄0 = 𝐄𝑀+1 = 0, the 𝜕𝐂/𝜕𝐯 term can be explicitly written term-by-term as follows:   
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With Eqns. (S2.2) to (S2.13), we can apply the Newton update equations in Eqn. (28) and (29).  

  



Part 3. Coupled mode theory for an acousto-optic waveguide.  

In Part 3 of the Supplementary Material, we derive the interaction of optical and acoustic 

waves inside an acousto-optic medium using coupled mode theory. This derivation is done also in 

the transverse electric polarization where 𝐸𝑧 couples to 𝑈𝑥 and 𝑈𝑦, and the results are used for the 

numerical validation in Fig. 3.  

In the stimulated Brillouin scattering (SBS) process considered in the paper, there exists three 

interacting waves: a back-propagating optical pump �̃�2(𝑥, 𝑦, 𝑡) at 𝜔2 with propagation constant 

𝛽2, a forward-propagating optical Stokes wave �̃�1(𝑥, 𝑦, 𝑡) at 𝜔1 with propagation constant 𝛽1, and 

a back-propagating acoustic wave �̃�(𝑥, 𝑦, 𝑡)  at frequency Ω = ω2 − 𝜔1  and wave vector 𝑞 =

𝛽2 − 𝛽1. Mathematically, these fields can be written as [1]:  
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where 𝐴1,2(𝑥)  and 𝐵(𝑥)  are the slowly-varying modal amplitude for the optical waves and 

acoustic wave, respectively, and �̂�1,2(𝑦)  and �̂�𝑥,𝑦(𝑦)  are the modal profiles that satisfy the 

following optical and acoustic waveguide dispersion [1-3]:  
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where 𝜀𝑟  is the relative permittivity of the medium, 𝑐𝐼𝐽  describes the stiffness tensor in Voigt 

notation, 𝜌 is the density of the acoustic material, and Ω𝐵 is the SBS frequency of the waveguide 

with the given wave vector 𝑞 = 𝛽2 − 𝛽1, which may be detuned from the acoustic frequency Ω =

𝜔2 − 𝜔1. Furthermore, the value of |𝐴1,2(𝑥)|
2
 and |𝐵(𝑥)|2 are the optical and acoustic power of 

the guided mode, respectively. By this formulation, the optical modal profiles �̂�𝑚(𝑦)  are 

normalized in the following way [3]:  
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and likewise, �̂�(𝑦) is normalized as [1]  

*ˆ ˆ2 1b xi k

ikl

lkl iP dydz c u ui    ,     (S3.7) 

or more explicitly in two-dimensions,  
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 We now consider the acousto-optic interaction and derive the equation of motion for the 

envelope functions. For the optical waves in Eqns. (S3.1) and (S3.2), the equation of motion from 

Maxwell’s equations is described by 
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To begin, we consider the optical envelope functions. By substituting Eqn. (S3.1) into Eqn. 

(S3.9) and applying the slowly-varying envelope approximation (SVEA) to ignore the 𝜕𝑥
2𝐴𝑚 terms 

[3], and together with the modal equation in Eqn. (S3.4), we obtain 
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and likewise for Eqn. (S3.2), we get 
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In Eqns. (S3.10) and (S3.11), the [  ∙  ]𝜔𝑚
 notation denotes summing up all terms with frequency 

𝜔𝑚. Upon applying the projection operation ∫ 𝑑𝑦𝑑𝑧 �̂�1
∗( ∙ ) to Eqn. (S3.10) and ∫ 𝑑𝑦𝑑𝑧 �̂�2

∗( ∙ ) to 

Eqn. (S3.11), and using the normalization conditions in Eqn. (S3.6), we get  
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In a similar fashion, we can derive the equation of motion for the acoustic wave. For the 

acoustic wave in Eqn. (S3.3), the equation of motion is described by  
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where 𝑐𝐼𝐽
′  is the complex-valued tensor that contains both the stiffness tensor 𝑐𝐼𝐽 and the viscosity 

tensor 𝜂𝐼𝐽 like so: 𝑐𝐼𝐽
′ = 𝑐𝐼𝐽 + 𝑖Ω𝜂𝐼𝐽. As we substitute Eqn. (S3.3) into Eqns. (S3.14) and (S3.15) 

and use the SVEA by ignoring 𝜕𝑥
2𝐵  terms, the resulting equations of motion in the 𝑥  and 𝑦 

directions respectively are:  
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When we project ∫ 𝑑𝑦𝑑𝑧 (�̂� �̂�𝑥
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∗ )( ∙ ) onto Eqns. (S3.16) and (S3.17), and use the power 

normalization equation in Eqn. (S3.7), we find that  
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where 𝛼 is the acoustic loss rate and has the form:  
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We are now ready to treat the acousto-optic coupling terms in the modal overlap intergrals 

of Eqns. (S3.12), (S3.13), and (S3.18). For the photo-elasticity term, with our choice of 

polarization,  
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When applying this term to the electric field and matching frequency components, we explicitly 

evaluate the integrals with the photo-elastic terms to be   
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To treat the boundary term, we recall from Part II of this document that [1] 
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After matching with the correct frequency terms, we can express Eqn. (S3.25) explicitly as  
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The integral with the moving boundary terms in Eqns. (S3.12) and (S3.13) become  
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where we choose 𝑦 = 𝑎 to be the upper boundary of a symmetric waveguide with half-width 𝑎. In 

all of the coupling coefficient 𝑄, we note 
*

( , ) ( , )
12

b PE b PEQ Q 
 

 and 
*

( , ) ( , )
12

s MB s MBQ Q 
 

, which 

is consistent with the results in Ref. 1. To summarize, the optical envelope functions vary with the 

following differential equations:  



( , ) ( , ) *
1 1 0 1 1 2

b PE s MB
x A i Q Q B A     

 
 ,   (S3.30) 

( , )
2 2 2 2 1

( , )
0

b PE s MB
x A i Q Q BA     

 
.   (S3.31) 

In the same way, we can expand the modal projection terms on the right hand side of Eqn. 

(S3.18) to see how the acoustic envelope couples to the electric fields. Just like before, the coupling 

can be decomposed into the electrostrictive contribution and the moving boundary contribution 

from radiation pressure. Analytically, we can rewrite (S3.18) as:  

( ) ( , ) *
1 2

ES s MB
x b bB QB i Q A A    

 
  .   (S3.32) 

As is stated in Ref. 1 and is independently verified, ( ) ( , )
1

ES b PE
bQ Q  and ( , ) ( , )

1
s MB s MB

bQ Q .  

The coupled system of first-order differential equations (S3.30) to (S3.32) completely 

describes the equation of motion for the envelope functions 𝐴1(𝑥) , 𝐴2(𝑥) , and 𝐵(𝑥) . The 

boundary conditions of 𝐴1(𝑥), 𝐴2(𝑥), and 𝐵(𝑥) are given a priori according to the setup of the 

SBS process. |𝐴1(𝑥)|2  and |𝐵(𝑥)|2  give the power of the Stokes wave and acoustic wave, 

respectively, as plotted in Fig. 3(d). 
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