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Part 1. Explicit numerical formalism in two-dimensions

In Part 1 of the Supplementary Material, we present the details of the two-dimensional
acousto-optic FDFD algorithm for the transverse-electric (TE) polarization, where the electric field
E, couples to the acoustic displacement fields U, and U, . This formalism is used for the

simulation examples shown in Figs. 3 and 4.

To start, we recall the general first-principles equations for both optical and acoustic waves.

For an optical wave, the electric field at frequency w is described by
V x ,uo_lv x E(w) - a)zgoarE(a)) —0’P(0) =—iwd(w), (S1.1)

and for an acoustic wave, the mechanical displacement field at frequency Q is described by

0
PR +30, [Cijkl + 10k aj|§kul +F=0. (S1.2)

ki
In two-dimensions, we adopt a discretization grid as shown in Fig. S1(a). In each ij cell,

where i and j are the indices in the x and y directions respectively, E, is located at the origin, U,y

is located at the half point along the x(y) direction, and the material parameters are specified at

the center of the cell.
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Figure S1. (a) lllustration of the placement of the fields and material parameters inside the
discretized ij cell. (b) Schematics of an arbitrary structure. (c) Illustration of the surface-normal

elements o, and o,, of the arbitrary structure in (b).

To construct the finite difference equations of Eqns. (S1.1) and (S1.2) for E,, Uy, and U,

we first introduce a few operators. In the equations below, a{j and 92 denote a forward and

backward derivative operator in direction w, respectively. Likewise, Vv{ and V.2 denote a forward
and backward averaging operator, respectively. For a given material parameter, a superscript with
< w > denotes that the parameter is being averaged in the w direction. This is to ensure that the
parameters are co-located with the field components that they act on. With these notations, Eqn.

(S1.1) for an electric field E, ,, at frequency w,, can be written as:
|:at>)( ,uoil 8;: + at;/ ;uoil a)f/ + a)ﬁ]gogfb} E;m+ a)ri Pom =053, m, (S1.3)

and Eqn. (S1.2) becomes:



(O™ +0f G 8%+ Cos 0) [Uy+| 0f &7 0} + Y s 0) |U, +F, =0, (SL4a)
[ 3% s 0y +0y 67705 Uy +| Q207 + 8} e 0y +0) &7 0 JU, +F, = 0. (S1.4b)

In Egns. (S1.3) and (S1.4), we assume that all the field, material quantities, and operators have
been discretized, and the fields are reshaped into a column vector. For the acoustic parameters, we
adopt the Voigt index notation such that in c;;, I and J are index from 1 to 6, where 1 = xx; 2 =
yy; 3 =1zz; 4 =yz = zy; 5 = xz = zx; 6 = xy = yx. Furthermore, the terms ¢,; is a complex
tensor that contains both the stiffness tensor and the viscosity tensor: ¢;; = c;; + iQn;;. To shorten

the operators, Eqns. (S1.3) and (S1.4) can be written as:

AnE, m+ @5Pym =100 d, (S1.5)
B,U, +BU, +F, =0, (S1.6a)
ByU, +ByU, +F, =0. (S1.6b)

To include the functional forms of the coupling between E,, U,, and U,,, we first identify the

constituents of P, ,,, Fy, and F, just like that of Eqns. (7) and (17):

P, = PO:PE) 4 peMB) (S1.7)
Foy =FOF) L G 4 FEME) (S1.8)

First, we expand the terms in Eqgn. (S1.7). This term is the same as Eqn. (13) of the
manuscript. With the polarization that we chose in our paper, the photo-elastic coupling tensor

only happens through the p1, = P,zxx = P22y, €lement of the tensor. Thus, we have:



PLPE) — g6, pit [(6§UX + Oy ), oy + (B0 + 03U EWJ . (SL9)

For moving boundary considerations, since E, is transverse to all material boundaries that

lie in the x — y plane, Eqgn. (14) contains only one term, namely
AD, =gy(s, —&,)E, . (51.10)

With the boundary definition of o (an example of which is shown in Fig. S1(c) for the structure

in Fig. S1(b)), Eqgn. (15) becomes:

PZ(’%MB) =& (ga - gb) (be (O';y>U x) +V;J (O';X>U y)) Ez,m—l (Sl 11)
+ (e —55) (Vi (077U +V) (05°U)) ) By

Together, Egns. (S1.3), (S1.9), and (S1.11) describe the optical equation of motion.

Now, we treat the acoustic wave equation and expand the terms in Eqgn. (S1.8). In the x

direction, the electrostrictive body and surface forces in Egn. (18) can be written as:

Fx(b,ES) =—g,ps)” (€r<y>)26; Z E:,m Byt » (S1.12a)
m
FOE) = g p” (6772 oV, > E;m E, mt - (S1.12b)
m

The radiation pressure term in Eqn. (20) can be written as:

FOMB) — g (g, —&,)o V] > E:,m E, s (51.13)
m

Similarly, the forces in the y direction can be written as:

Fy(b,ES) =g, P gr<><>)25;‘l > ErmErmirs (S1.14a)
m



|:(s ES) _ & p1<2X> (gr<x>)20_)</x>vyf Z E;m Ez,m+1 , (S1.14b)
m
Fy(S’MB) =&y(&, —gb)U;DVyf z E;m Ez,m+1 . (S1.15)
m

By combining all the constituents of P, ,,, F;, and F, into Egns. (S1.5) and (S1.6), we obtain

the discretized dynamic equations as described in Eqns. (16) and (21). Explicitly, with the choice

of polarization in two-dimensions, they can be written as:

AnEom + @heoz’ 053 | (U + 00U, ) By + (U5 + U5 ) By s |
+a)§]50 (5a _gb)(vxb (O-)fy>Ux) +V3P (O-;X>U y)) Ez,m—l (81-16)

R (53— ) (Vi (057U3) +V) (05U By g = 103,

B11Ux + BlZU —& p<y> (8r<Y>)25; z E:,m Ez,m+1

X (S1.17a)

+80|: v (5<y>) +(&, _gb)] <y>fo Z Ez,m Ez,m+1 =0,
m

<X> <x> 2Af *
BoiUx +BuU, —&opry (6777)70y Z E;mEzma
m

) s — . (S1.17b)

<X> <X> <

+&o [ P (677) + (& _gb)]o-y >Vy Z E;mEzmia=0.
m

To solve Egns. (S1.16) and (S1.17), we can follow the techniques discussed in Sec. Ill of the
manuscript by constructing the nonlinear system of equations and its Jacobian, and apply Newton’s

update equations to iteratively obtain a self-consistent set of equations.



Part 2. The explicit expression of the Jacobian operator

In Part 2 of the Supplementary Material, we present the general expression of the Jacobian operator
term by term. The results are used for the Newton update equations in Eqgns. (28) and (29). Recall

that Eqn. (27) states that

D, (v) = a%f/") _0+ 8(;\(/v) , (52.1)

where O is given in Eqn. (24), and the constituents of dC/av are given in Eqgn. (26). To derive the

dC/adv term of Eqgn. (S2.1), we first define an all-ones vector as 1=X+Vy + 2 . With this notation,

and by setting E, = E;,; = 0, the dC/dv term can be explicitly written term-by-term as follows:

oCr(v) _ Ky (V)
aVm—l - aEm—1

=0, e0le,” (p: VO U)1+ (&, - &)ix(-ix1)(U 'GS) (S2.2)

(5" =g )ine(g,1)(Uso ],

6C,(v) _ 3K, (v)
Npy Oy

=0, 50le,” (P VOU" )1+ (g, —5,)ix(-ix1) (U +0°) (S2.3)

m+1
+(g, —&.h)An -(grl)(U* °cs)],

0Cp (V) _ Ky (V)
Noway U

= 0,260, (P 1V ® L)y y — 0,260 (5, — )% [—ﬁ XEp 4 (1°6° )] (S2.4)

~ e~ &) Ae(6Eq ) (100°) |




Cp(v) _ oK, (V)
aV2M+2 - aU*

=, &,8,° [(E Ve 1) Em+1] —0,°5y(s, —&,)Ax [—ﬁ XE (l ¢’ )}

— 0,58, —8;1)ﬁ[ﬁ '(grEm+1)(l'Gsﬂ

OCm (V) _ OKG (V) _ 9Ky (V) _ 8C, (V)
aVM +m-1 aE* aE 8v |

m-1 m+1 m-+1

aCm+M (V) = aK:n (V) — aKm(v) — aCm (V) )
aVM +m+1 aE* aEm—l aVm—l

m+1

C (V) _ KL (V) (aKm(w j (3, )
Ny, OU U ) v )

OCppu (V) _ OKG (V) _ (aKm(w ) _[CaM )
Nom2 ou” ou Noma

0C (V) _ OL(V)
v, OE,,
= £y57 (6" —V)ep: E. ., ®1

*

(S2.5)

(S2.6)

(S2.7)

(S2.8)

(S2.9)

(S2.10)

+o” [go(ga —gb)(ﬁx E’;n_l)(ﬁ><1)—¢90(5b_1 —8;1)(ﬁ'8rEm_1)(ﬁ -grl)],

Comn(V) _ 8L(:/)

8VM+m aEm
= 5,62 (o” -V)*p:1®E

m+1

+0" [30(5;1 —gb)(ﬁxl)(ﬁxEerl)—go(ggl—8;1)(ﬁ°5r1)(ﬁ-grEm+l)}

*

OCo(V) _ U (W) (L)) _[Cya(v)
ov oE oE,, ov ’

m m M-+m

(S2.11)

(S2.12)



Coma (V) _ oL (v) _ (6L(V) J* = (8C2M+1(V) ]*. (52.13)

Nyt oE oE,, ov

m

With Eqns. (S2.2) to (S2.13), we can apply the Newton update equations in Eqgn. (28) and (29).



Part 3. Coupled mode theory for an acousto-optic waveguide.

In Part 3 of the Supplementary Material, we derive the interaction of optical and acoustic
waves inside an acousto-optic medium using coupled mode theory. This derivation is done also in
the transverse electric polarization where E, couples to U, and U,,, and the results are used for the

numerical validation in Fig. 3.

In the stimulated Brillouin scattering (SBS) process considered in the paper, there exists three
interacting waves: a back-propagating optical pump E,(x, y, t) at w, with propagation constant
f3,, a forward-propagating optical Stokes wave E; (x, y, t) at w, with propagation constant 3;, and
a back-propagating acoustic wave U(x, y,t) at frequency Q = w, — w; and wave vector q =

B — B1. Mathematically, these fields can be written as [1]:

E (X, y,t) = E (X, y,1)e" +c.c.= A (X)g (y)e et Lcc., (S3.1)
E, (X, y,t) = B, (X, y, )" +cc. = A ()&, (y)e et y e, (S3.2)
U(x,y,t) = U(x, y,t)e'* +c.c.= B(x)[mx(y) + yay(y)]+c.c. , (S3.3)

where A; ,(x) and B(x) are the slowly-varying modal amplitude for the optical waves and
acoustic wave, respectively, and é;,(y) and i, (y) are the modal profiles that satisfy the

following optical and acoustic waveguide dispersion [1-3]:

(0% — B2)en(Y) =~ thoeoe,En (¥) (S3.4)

2 ; i i i

q —0,Cee0 iqc,,0, +1q0,C a u

| Ci1 y 660y 212 y y 66 le :PQBZ X , (S3.5)
|qay012 + ch666y q 066 _ﬁycllay y



where ¢, is the relative permittivity of the medium, c;; describes the stiffness tensor in Voigt
notation, p is the density of the acoustic material, and Qj is the SBS frequency of the waveguide

with the given wave vector g = 5, — 81, which may be detuned from the acoustic frequency Q =

w, — w4. Furthermore, the value of |A1,2 (x)|2 and |B(x)|? are the optical and acoustic power of
the guided mode, respectively. By this formulation, the optical modal profiles é,,(y) are
normalized in the following way [3]:

| ém*(y)ém(y)dy=%, (83.6)

and likewise, i(y) is normalized as [1]

Pb = ZiQIddezCXik|0i*ak0| :1, (837)
ikl

or more explicitly in two-dimensions,

1

P (S3.8)

e AR A AK ~ - AT A A* ~
J'dydz [—clllquxuX +¢p,0,0,Uy, —Cgglqu, Uy, +066uyayux] =

We now consider the acousto-optic interaction and derive the equation of motion for the
envelope functions. For the optical waves in Eqns. (S3.1) and (S3.2), the equation of motion from
Maxwell’s equations is described by

2= 2_(pe)E 2A RN
e 0°E o“y'"™E 0°AD
V°E = théoer —5 + toéo sty ——— -

(S3.9)

To begin, we consider the optical envelope functions. By substituting Eqgn. (S3.1) into Egn.
(S3.9) and applying the slowly-varying envelope approximation (SVEA) to ignore the 92A4,,, terms

[3], and together with the modal equation in Eqn. (S3.4), we obtain



218,60, A = o’ 1y, [z(b*PE) EL + o 14 [AD(S'MB)L , (S3.10)

and likewise for Egn. (S3.2), we get

2iB8,04 R0 = 0, 2o | X PPIE |+’ pig| ADEM | (S3.11)

@, 2}

In Egns. (S3.10) and (S3.11), the [ - ], notation denotes summing up all terms with frequency
w,,. Upon applying the projection operation [ dydz é;(-) to Eqn. (53.10) and [ dydz é;( ) to

Eqgn. (S3.11), and using the normalization conditions in Eqgn. (S3.6), we get

0P =iy, [ dydz {éf | ;Ab'F’E)E]@}— ico, [ dydz {éf [ADEY® | } . (S3.12)

0y =iayey[dyc &5 7070 |-y [ayez (e[ a0 ] 1 (5313)

In a similar fashion, we can derive the equation of motion for the acoustic wave. For the

acoustic wave in Eqgn. (S3.3), the equation of motion is described by

0?0 R R Do R
P 00U =010, 0,000, ~ 0,5 0,0, =F,  (S314)

02U . 3 . 3
D atzy —0,c4,0,U, —0,c",0,U, —0,0'650,U, —0,C'ss0,U, =F,,  (S3.15)

where c;; is the complex-valued tensor that contains both the stiffness tensor c;; and the viscosity
tensor n,; like so: ¢j; = ¢;; + iQn;;. As we substitute Egn. (S3.3) into Eqgns. (S3.14) and (S3.15)

and use the SVEA by ignoring 9ZB terms, the resulting equations of motion in the x and y

directions respectively are:



_ZIqullj +C126 a, +0 Ceelj 0,B
[ X 2 y- y y A y-] X A N (83.16)
_[q Thy +1077120,Uy +100 77660y —5y77668yux]|QB =-F,,

2, L n . ! (S3.17)
_[q g + 1077660y Uy + 100 7715Uy _ayﬂllayuy] QB =-F,.

When we project [ dydz (9? iy +9 ﬁ;‘,)( -) onto Egns. (S3.16) and (S3.17), and use the power

normalization equation in Eqgn. (S3.7), we find that
0,B-aB =i dydz| G3F, +0}F, |, (S3.18)

where « is the acoustic loss rate and has the form:

a=0 dydz[O:Lx +a’;Ly], (S3.19)
L, = _q27711 U, —iqmy, ayljy - iqay 77660y +ay77668yljx’ (S3.20)
I-y = ayﬂllayay - iqaynﬂ ljx _q2n66 ljy - Iqay 7712le : (8321)

We are now ready to treat the acousto-optic coupling terms in the modal overlap intergrals
of Egns. (S3.12), (S3.13), and (S3.18). For the photo-elasticity term, with our choice of

polarization,
23 =2py (0,0, +0U, ). (S3.22)

When applying this term to the electric field and matching frequency components, we explicitly

evaluate the integrals with the photo-elastic terms to be



*
*

&o [ dydzé; | ;((b'PE)EL = &9 dydz &,” py,; (-iqu, +2,0,) & B A,

, (S3.23)
_Q,*PEIB" A,
go[dydz&;| 7B | =g [dydze, iy, (-iad, +0,0, )& BA
@ : (S3.24)
_ Qz(b,PE)BAL.
To treat the boundary term, we recall from Part 11 of this document that [1]
AD, =oyéy(s, — &, )(J* U)E, . (S3.25)

After matching with the correct frequency terms, we can express Eqgn. (S3.25) explicitly as

[AD(S’MB)L = GSe0(6a —6)0y6, BT A, (S3.26)

[AD(S'MB) L = oSe(6a—£5)0,6 BA. (S3.27)

2

The integral with the moving boundary terms in Eqns. (S3.12) and (S3.13) become

*

Joyazgl [ aDCM | =2 dz(ey - a)E06, | BTA, (53.28)
= Ql(S'MB) B*AZ’

Joydz&[ ADEMD | =2| oz (e -a)€0,8 ] BA (53.29)
- QZ(S,MB) BAl,

where we choose y = a to be the upper boundary of a symmetric waveguide with half-width a. In
all of the coupling coefficient Q, we note Q,*"%) = [Ql(b'PE)] and Q,M®) — [Ql(S'MB)} , which

is consistent with the results in Ref. 1. To summarize, the optical envelope functions vary with the

following differential equations:



0 A =—iengy| QPP + QM |8 A, (S3.30)

0,y = -y | Q"™ +Q, M) |BA,. (S3.31)

In the same way, we can expand the modal projection terms on the right hand side of Eqgn.
(S3.18) to see how the acoustic envelope couples to the electric fields. Just like before, the coupling
can be decomposed into the electrostrictive contribution and the moving boundary contribution

from radiation pressure. Analytically, we can rewrite (S3.18) as:

0,B-aB =10 Q™ +Q*"¥ | A'A,. (S3.32)

As is stated in Ref. 1 and is independently verified, Q,=) =Q,®"®) and Q,M8) = QM)

The coupled system of first-order differential equations (S3.30) to (S3.32) completely
describes the equation of motion for the envelope functions A;(x), A,(x), and B(x). The
boundary conditions of A, (x), A,(x), and B(x) are given a priori according to the setup of the
SBS process. |4;(x)|? and |B(x)|? give the power of the Stokes wave and acoustic wave,

respectively, as plotted in Fig. 3(d).
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