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Classification of fragile topology enabled by matrix homotopy
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Flat bands in twisted materials have attracted considerable attention due to the emergence of correlated phases
that can be associated with the non-Wannier-representable nature of its single-particle states. Specifically, these
bands can exhibit a class of topology that can be nullified by the addition of trivial bands, termed fragile topology,
which has required an expansion of prior classification schemes. However, existing approaches for predicting
fragile topology rely on momentum-space methods, e.g., Wilson loops, presenting a fundamental challenge
for using fragile topology as a predictor of correlated phases in aperiodic systems, such as incommensurate
twist angles in moiré materials. Here, we develop a Z, energy-resolved topological marker for classifying
fragile phases using a system’s position-space description, enabling the direct classification of finite, disordered,
and aperiodic materials. By translating the physical symmetries protecting the system’s fragile topological
phase into matrix symmetries of the system’s Hamiltonian and position operators, we use matrix homotopy to
construct our topological marker while simultaneously yielding a quantitative measure of topological robustness.
We demonstrate our framework’s effectiveness in both a low-energy tight-binding model and a continuum
photonic crystal model of C,7 -symmetric systems, and find that fragile topology can both persist under
strong disorder and even exhibit disorder-induced reentrant phase transitions. Our photonic crystal results
also demonstrate the robustness of fragile topology, and the applicability of our approach, to heterostructures
lacking a bulk spectral gap. Overall, our framework serves as an efficient tool for elucidating fragile topology,
offering guidance for the prediction and discovery of correlated phases in both crystalline and aperiodic

materials.
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I. INTRODUCTION

Since their discovery, topological phases of matter have
served as pivotal physical properties that broaden the fron-
tiers of functional materials, both through their protection
of boundary-localized states and through their prediction of
delocalized single-particle wave functions that can precipitate
correlated phases. Representative examples include Chern in-
sulators [1] and topological insulators [2], which host gapless
edge states protected by associated topological invariants and
persisting as long as their internal symmetries are preserved
and the corresponding spectral gap remains open. Such classes
of topology are now referred to as strong and exhibit a bulk-
boundary correspondence, linking the presence of protected
boundary states to the nonzero topological indices of the
bulk bands. Likewise, in conjunction with certain types of
interactions, the delocalized electrons in topological bands
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can give rise to correlated phases such as fractional Chern
insulators [3—8] and superconductivity [9—11]. Within a K-
theoretic framework [12—-14], classification schemes rooted in
vector bundles can systematically assign topological indices
to band gaps by summing up the topological invariants of each
occupied band.

Recently, the emergence of crystalline-symmetry protected
topological phases [15-17] has revealed a richer variety of
phenomena including weaker forms of topology. Distinct
from strong topology, crystalline topology has a nuanced
bulk-boundary correspondence [18-21], stimulating the de-
velopment of theoretical frameworks such as topological
quantum chemistry [22], symmetry indicators [23,24], and
Wilson loop approaches [25,26] for classifying these subtle
phases. Among these weak topological phases, the concept
of fragile topology [18] has been found as a contrasting case
to stable topology, where the topological features of certain
bands can be trivialized through the addition of atomic lim-
its. Importantly, the moiré flat bands of small-angle twisted
bilayer graphene (TBG) [11,27-34] have been identified as
possessing such fragile topology, indicating the delocalized
nature of its single-particle wave functions and attracting sig-
nificant attention due to potential connections to correlated
phases [35-38] and superconductivity [39—43]. This class
of topology also appears relevant to debates regarding the
weak topological protection [44-47] of the interface states
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observed in various photonic crystal (PhC) platforms, as well
as to potential applications of corner states and some types
of edge states [48-56]. However, existing studies of fragile
topology have focused on momentum-space classifications
[18,28,30,57-60], prohibiting the application of these ap-
proaches to aperiodic and disordered materials. In particular,
the lack of a position-space approach for classifying fragile
phases that works with finite regions of a material inhibits the
ability to study the manifestation of such topology for twist
angles near a magic angle. Such an approach could provide
insight into how delocalization of a system’s single-particle
wave functions occurs, and thus how correlated phases
appear.

Here, we derive and demonstrate a position-space ap-
proach for classifying fragile topology and find an associated
measure of robustness. Specifically, we show how the phys-
ical symmetries that protect fragile topology can give rise
to matrix symmetries in a system’s Hamiltonian and posi-
tion operators when expressed in an atypical basis. These
matrix symmetries can then be used to define a homotopic
invariant that distinguishes two-dimensional (2D) systems
based on which atomic limit they can be continued to, yield-
ing an energy-resolved Z, topological marker. Moreover,
this approach implicitly introduces a quantitative measure of
topological protection that remains valid under a variety of
conditions, including finite system size, disorder, and environ-
mental perturbations. We apply our approach to a disordered
C,T-symmetric TBG model and a 2D photonic crystal em-
bedded in an air background, showing that fragile topology
can persist even under strong disorder and when a heterostruc-
ture lacks a bulk spectral gap. Our disordered simulations
also reveal a disorder-induced reentrant transition [61,62] to a
fragile phase with increasing disorder strength. Altogether, as
our work shows how to characterize fragile topology beyond
momentum-space descriptions, it may offer insights into both
natural and metamaterial aperiodic and moiré systems, as well
as correlated phenomena and superconductivity. In addition,
the arguments we present here provide guidance on how to
develop further position-space topological classification ap-
proaches for predicting forms of material topology associated
with delocalization.

II. POSITION-SPACE ENERGY-RESOLVED
MARKER FOR FRAGILE TOPOLOGY

We start by deriving an energy-resolved Z, marker that
classifies fragile topology in finite C,7 -symmetric systems,
with 72 = 1 and without requiring the system to have either
symmetry in isolation. The key difference of our approach
is that rather than focusing on a system’s eigenstates, as are
used in standard classification methods for fragile topology
such as Wilson loops [25,30,32,52,55,63,64], our framework
is instead rooted in the system’s operators directly, such
that these eigenstates never need to be determined. By def-
inition, the Hamiltonian of a C,7-symmetric 2D system
obeys

(C,T) 'H(G,T) =H, (1)

while the system’s position operators X and Y anticommute
with this symmetry due to C,,

G 'X(CT)=-X, G 'YGT)

This suggests that we should define a “symmetry-informed,
transposelike” matrix operation p as

M? = (GT) 'MY(CT)=CM'Cy; A3)

=—Y. ()

see Appendix A2 for the simplification. In other words, this
operation is the transpose intertwined with a rotation, and
associates the system’s physical C,7 -symmetry to a set of
mathematical matrix symmetries for its operators as

X’ =—-X, Y’=-Y, and H” = H. @)

The relations in Eq. (4) are reminiscent of the system’s op-
erators being either symmetric M = M or skew-symmetric
M7 = —M, which in general are useful properties for study-
ing matrix homotopy. For example, two invertible Hermitian
skew-symmetric matrices My and M, are homotopy equiva-
lent and can be connected via a path of invertible Hermitian
skew-symmetric matrices M, with ¢ € [0, 1] if and only if
sign[Pf(My)] = sign[Pf(M;)], where Pf denotes the Pfaffian.
This is because the Pfaffian can only change sign when
two of eigenvalues of some M, simultaneously cross 0, at
which point the connecting matrix M, would be noninvert-
ible (see Remark A2 in Appendix A4 and Sec. 3.9 of
Ref. [65]).

The key reason to define p is that if p commutes with the
adjoint, such that (M?)" = (M")”, there is a basis in which
p — T (see Appendix A 2). Thus, if possible, this single step
allows one to link the system’s essential physics, contained in
p, to prior mathematical results on matrix homotopy, enabling
the definition of a topological invariant. Here, one can directly
compute that

M"Y =CMT) ' =M ¢ = M,

and that the unitary matrix

1
W=—(C i1 5
ﬁ(2+l) (5)

transforms the system to the basis in which p — T. Specifi-
cally, this means that

WXWHT = —wxw’, WwywH" = —wyw",
and (WHWHT = WHWT. (6)

To develop an invariant to classify fragile topology pro-
tected by C;7 symmetry, we combine the system’s operators
centered about a choice of (x, y, E) in position-energy space
using the Pauli matrices oy, .:

Ly WXWT, WYWT, WHW™)
=k(WXW' —x1) @ o, + k(WYW' —y1) ® 0.
+(WHW' - E1) ® 0y, (7)

yielding a spectral localizer [66—69]. Here, « is a scaling co-
efficient that sets the spectral weight of the position operators
relative to the Hamiltonian. In spectrally gapped systems, k
is typically on the order of k ~ Egup/Liin, Where Eg,, is the
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width of the gap and L, is the minimum length of the system
in any direction [68]. Heuristically, the use of the Pauli matri-
ces is enabling us to define a single matrix L, , gy using the
system’s operators while preserving the independence of the
information carried in X, Y, and H, in an analogous manner to
how the Pauli matrices (along with 1) form a complete basis
for 2 x 2 Hermitian matrices.

The critical features of Eq. (7) are that it is Hermitian for
any (x,y, E), and at x =y = 0 (i.e., the center of rotation),
Lo.0,r) 1s skew-symmetric. This skew symmetry has been
achieved by placing WXW' and WYWT against o, and o,
and placing WHW ' against o, such that each tensor product
is between a symmetric matrix and a skew-symmetric matrix
(as oxTz = 0, while a;r = —oy). Thus, the energy-resolved
invariant

ce(X, Y, H) = sign[Pf(L o.cy(WXW', WYW', WHW"))]

®)
distinguishes systems that can be connected to each other
while preserving C,7 symmetry and maintaining a positive
local gap

Ky.e)X, Y, H) = min([spec[Ly.e)(X, Y, H)])),  (9)

where spec[M] is the spectrum of M. By definition, (g €
{—1, 41} = Zy; if {g = —1, the system at E cannot be con-
nected to a trivial atomic limit, and vice versa. Moreover, since
¢p cannot change its value without p(0£) — 0, either by
changing the choice of E or by perturbing the system, the
local gap serves as a quantitative measure of the system’s
topological protection at E. Specifically, when perturbing the
system H — H + 8H, {g is guaranteed by Weyl’s inequality
to be preserved so long as [|8H || < .06 X,Y, H) [70,71].
In addition, as locations where (. gy = 0 are associated with
the locations of a system’s states [72], changes in a system’s
topological marker necessarily imply changes in the structure
of its states. A detailed mathematical discussion of Eq. (8), its
essential properties, and its relation to atomic limits is given
in Appendixes A 5-A 7. In particular, Examples A3 and A4
show the form of the two different classes of atomic limits
distinguished by ¢g. Altogether, the use of the operation p
has facilitated the the translation of physical symmetries to
matrix symmetries, enabling us to derive an energy-resolved
invariant for classifying fragile topology based on results from
matrix homotopy.

III. APPLICATION TO A FOUR-BAND MODEL

Having derived a classification framework applicable to fi-
nite systems, we demonstrate its use in a four-band model that
is a low-energy approximation of TBG and exhibits fragile
topology [28,31]. This model consists of a bilayer honey-
comb lattice, as schematically shown in Fig. 1(a), where
and 1, represent the intra- and interlayer hopping amplitudes,
respectively. The blue lines spirally connecting interlayer sites
represent next-nearest-neighbor (NNN) hoppings with the
hopping phase ¢, which can induce a nontrivial fragile band
gap. The explicit expression of the Hamiltonian for this lattice

(b) (c)
Local Gap tixo,g) e = sign[Pf(L)]
O ]jo3 -1 0 1
37 r :
2 . [
| <_Closing
5T~
) T
Q 0 1! Egp
80—
_1 - L
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_2 - -
-3 4 = i
r K M ~Xm 0 Xm O 0.3

Brillouin Zone Position x Local Gap 05

FIG. 1. (a) Bulk band structure for the C,7 -symmetric TBG
model. Inset diagrams this lattice model. (b) The local gap pi(. £ for
x and E aty = 0. Position x is scaled in terms of the lattice constant a
and x,, denotes the length of the edge from the origin. (¢) p,y,r) for
E at the center of rotation denoted by blue dotted line in panel (b).
The energy-resolved invariant {z is shown by the green dots, where
k = 0.1¢ /a for all calculations.

model in momentum space is given by

S, 3k k
hk) =6 ® |:(1 + 2 cos % cos %)ox

3ka Kk
+2sin Vi Ccos )—aoy:|
2
+ b ®© 1n(k, ¢) +n* (K, $)], (10)
with
n(k, @) = ie' (™ 4 e7Hham 4 okar) (11)

where we employ 7; = 0.4t1 + 0.6¢7, and #, = 0.1¢1,, mean-
ing intra- and interlayer hopping amplitudes, respectively, as
schematically shown by the black and blue lines in Fig. 1(a).
Here, ¢ indicates the overall energy scale, k = (k,, k) is the
in-plane momentum, and the primitive vectors are a;, =
(\/5, +1)a/2 and a3 = a; — a,. The Pauli matrices oy, ; and
T,y Tepresent the sublattice and orbital degrees of freedom,
respectively. We consider the additional interlayer hopping
phase to be ¢ = 0 here so that the initial coefficient of the
interlayer hoppings is purely imaginary.

In Fig. 1(a), we show the bulk band structure of the four-
band model. All four energy bands are symmetric with respect
to the Fermi level and each pair of bands exhibits Dirac points
at each of the K and K’ points throughout the Brillouin zone.
These Dirac points are protected by space-time C,7T inver-
sion symmetry [28], where 72 = 1 and C, denotes a twofold
rotation about the z axis. Note though that the system is nei-
ther C,- nor 7 -symmetric separately. In addition, the valence
bands exhibit an obstruction that prohibits their representation
by exponentially localized Wannier functions that obey the
system’s C,7 symmetry. As this obstruction disappears when
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FIG. 2. (a) Closings of E,,, due to uniform changes in ¢ in the
periodic G, 7 -symmetric TBG model. (b) Spectrum of L .0y (gray)
and ¢ (green) at the middle of the bulk band gap as ¢ is uniformly
varied in the finite TBG system. (c) Hopping phases of clean and
disordered systems depicted on the unit circle. The red and blue dots
correspond to the opposite off-diagonal terms of the Hamiltonian,
forming conjugate pairs. Ensemble analysis of Eg (d), 14(0,0,0) (€),
and histogram of ¢, for the ten disorder configurations for increasing
S (f). In panels (d) and (e), the black dashed lines show the behavior
for uniform hopping phase changes in the clean system. Solid gray
lines show the results for each disorder configuration, the solid green
line shows the average over the ensemble, and the gray shading
fills the area between the maximum and minimum of these data,
representing the sample deviations. The histogram in panel (f) uses
green and gray to indicate {, = —1 and +1, respectively.

more trivial bands are added to the model, this system exhibits
fragile topology [28,31].

To study finite geometries and disorder in the four-band
TBG model, we instead work with the system’s expression in
position space, which is given by the Hamiltonian

H =Y "cl@je;+ Y clsiylie?i)je;,  (12)
(i, )) (i)

where s;; = +1 is chosen for r; = r; + ay.

Comparison of the bulk band structure of the infinite four-
band TBG model with the local gap of a finite system confirms
that the locations in (x, y, E') space with r(. £y ~ 0 indicate
the presence of states at the specified energies and positions
[see Figs. 1(a) and 2(b)]. For choices of E residing within
the spectral extent of the bulk bands, extended Bloch states
are distributed throughout the system and (., g) ~ 0 for
any choice of (x, y), whereas within the bulk band gap, only
localized states exist at the system’s boundaries. Note that
the fluctuations of ji(y0,g) that only intermittently touch zero
near the system’s boundary in the band gap inherently suggest
the weak topological nature of this fragile system; strong

topological phases instead exhibit a spheroid of appropriate
dimension on which pi(, . gy = 0 (see Appendix A 7).

Within the bulk band gap, the energy-resolved marker ¢g
confirms the finite system’s fragile topology, while the large
local gap at the rotation center indicates this phase’s strong
topological protection [see Fig. 1(c)]. For energies above and
below the bulk gap, {g maintains a nontrivial value of —1
until the first closing points where 40,0,y = 0, beyond which
it switches to +1. The exact energy where w0y = 0 and
{g switches sign varies slightly over a large range of « (see
Appendix C), which may be related to an energy where band
inversion has occurred. Although fragile topological phases
do not generally exhibit a bulk-boundary correspondence
[18-21], our framework reveals a “bulk-boundary-in-energy”
correspondence for fragile phases as closings of the lo-
cal gap guarantee the presence of a nearby state [72] and
¢g must become trivial for E above or below all four
bands.

To confirm that the local fragile marker ¢ captures phase
transitions, we uniformly vary ¢ between all NNN sites from
—m to . As can be seen in Fig. 2(a), the width of the bulk
spectral gap under this alteration is symmetric about ¢ =0
and touches zero at ¢ = £ /3 and ¢ = +27 /3. Similarly,
the local gap closes at precisely the same points where Egyp =
0 and ¢g changes, indicating a change in the material’s fragile
topological phase.

As our framework works directly with a finite system
expressed in position space, it can inherently be applied to dis-
ordered and aperiodic systems. To illustrate this capability, we
consider an ensemble of disordered variants of the four-band
TBG model where the hopping phases ¢ between each pair
of NNN sites j and k are randomly assigned a value within
an angle range of 2§ from =+i from a uniform distribution
while preserving C,7 symmetry. Therefore, S represents the
approximate mean value of the disorder strength, allowing
us to investigate the phase diagram of the disordered system
based on this variable. In Figs. 2(d)-2(f), we present Egp,
1(0,0,E), and ¢ as functions of S for ten different disorder real-
izations. We numerically observe that the disordered samples
exhibit spectral gap closings and topological phase transitions
near S = /3 and 277 /3, confirming our energy-resolved local
marker’s ability to classify disordered systems.

Moreover, the results in Figs. 2(d)-2(f) provide clear evi-
dence of disorder-induced reentrant phase transitions [61,62]
for fragile topology, offering a perspective on the stability
of fragile phases. These findings reveal that obstructions to
connecting a system to a trivial atomic limit can reemerge
beyond a certain disorder threshold rather than simply being
destroyed. In particular, such behavior parallels phenomena
observed in topological Anderson insulators [73], suggesting
an intricate interplay between disorder and topology in moiré
systems. Thus, the reentrant topological transition emphasizes
the limitations of momentum-space approaches and illustrates
the possibilities for a topological marker rooted in a system’s
position-space description.

IV. APPLICATION TO A 2D PHOTONIC CRYSTAL

Finally, to show the broad applicability of our approach
in quantifying material topology across systems described
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FIG. 3. (a) Schematics of a single unit cell of the photonic crystal (upper) and a heterostructure (lower) formed by 6 x 6 unit cells
surrounded by air bounded by a perfect electrical conductor. Here, €, = {16, 6i, 0; —6i, 16, 0; 0, 0, 16}, e, =4, €5 = 1, a is the lattice
constant, r = 0.2a, and d = 0.45a. (b) Band structure of the bulk photonic crystal. The density of states (DoS) (c) and the local gap and
frequency-resolved index (d) for the 6 x 6 finite system from panel (a). Calculations in panel (d) use x = 0.01 27 c/a?, where c is the speed of
light in a vacuum. (e) Local density of states (LDoS) within the fragile band gap depicted by green in panel (b) at the two frequencies for the

finite heterostructure shown in panel (a).

by tight-binding and continuum models, the latter of which
is traditionally challenging due to high computational costs
[74,75], we turn to classifying fragile topology in photonic
crystals surrounded by air [76]. We consider the 2D PhC
unit-cell structure depicted in Fig. 3(a) that is designed to
be C,T-symmetric, with T2 = 1, while not exhibiting either
symmetry in isolation. The full heterostructure consists of
a region containing 6 x 6 unit cells surrounded by air with
perfect electric conductor (PEC) boundary conditions. The
system is discretized with standard finite-difference methods
to define the Hamiltonian and position operators [69,76—78]
and we focus on its transverse electric (TE) modes with
nonzero electromagnetic field components (H,, E,, E,).

For the infinite PhC system, the bulk band structure
[Fig. 3(b)] possesses two bands that can be shown to ex-
hibit fragile topology using Wilson loops (see Appendix
D). However, the inclusion of the surrounding air region
in the finite heterostructure removes any spectral gap from
the system’s DoS, as shown in Fig. 3(c). Nevertheless, the
frequency-resolved marker ¢, identifies this frequency range
as possessing fragile topology despite the lack of a spectral
gap [see Fig. 3(d)]. Moreover, although the bulk band gap
above the fragile bands is small, the relatively large local gap
indicates that the system’s topology is more robust than would
be suggested by the narrow width of the bulk band gap. The
LDoS for the magnetic field intensity near the frequencies
of the fragile band gap is shown in Fig. 3(e). At both fre-
quencies inside the fragile band gap, the LDoS is localized
at the boundaries of the PhC and has substantial support
outside of the PhC. Therefore, these results confirm that our
framework for classifying fragile topology can be applied
to systems that lack a bulk spectral gap without alteration
and that these systems can still exhibit topological robust-
ness associated with the region responsible for the fragile
topology.

V. CONCLUSION

In conclusion, we have introduced a position-space frame-
work for classifying fragile topology rooted in matrix
homotopy that distinguishes systems based on which atomic
limits they can be continued to. Applying this framework to
the TBG lattice model and PhC continuum model, we have
shown the breadth of the local marker’s ability to capture sys-
tems’ fragile nature. Moreover, the versatility of our method is
highlighted by its ability to identify nontrivial fragile phases
under conditions of strong disorder and gapless environments.
Taking disorder-induced reentrant fragile topology, which is
unpredictable by conventional methods, as an example, our
approach highlights further opportunities for potential ap-
plications across various fields such as strongly correlated
materials, metamaterials, and topological photonics. More
broadly, the physically motivated arguments we use to derive
g should be extendable to other physical dimensions through
a suitable choice of Clifford representation and spectral local-
izer. Likewise, we expect our approach to be straightforwardly
generalizable to other spatial symmetries that square to the
identity, as well as extendable to arbitrary spatial symmetries
using recent results from field of real C*-algebras [79].
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APPENDIX A: DERIVING THE INVARIANT
FOR CLASSIFYING FRAGILE TOPOLOGY

The main text provides a derivation of a topological marker
for classifying fragile topology using results from matrix
homotopy. However, underpinning this entire derivation is a
real C*-algebra and associated techniques. Thus, here, as we
provide further details on the argument given in the main text,
we will also place these arguments into the context of the
study of real C*-algebras.

Broadly, a (complex) C*-algebra is an associative algebra
with a norm and an involution that acts as an adjoint operation.
(An involution is an operation that is its own inverse.) For the
purposes of this Appendix, it suffices to simply consider the
algebra formed by all of the n x n matrices over the complex
field (i.e., matrices whose entries can be complex numbers),
M,,(C), with the usual operations like matrix multiplication,
the conjugate transpose M — M, in conjunction with the
operator norm | - || that denotes the largest singular value
of the matrix. This example of a C*-algebra is particularly
pertinent to physics, as it is the algebra that contains the
physical observables on a finite Hilbert space of dimension
n. [However, note that M, (C) also contains matrices that
are not Hermitian.] Regarding the naming of these algebras,
the % in C*-algebra is { in physics, but we cannot call these
CT-algebras so the nomenclature will clash with the notation.
A real C*-algebra possesses a second involution, M +— M?*,
that endows the algebra and its constituent elements with ad-
ditional structure. For our purposes here of classifying fragile
topology, this second involution is built from the symmetries
that protect the system’s fragile topology.

1. Symmetries

Consider a square system with open boundary conditions
(OBCs). This means we have two position observables X and
Y and Hamiltonian H. If the system has sides of length L,
then —L/2 < X < L/2and —L/2 <Y < L/2 (i.e., all of the
eigenvalues of X and Y fall within this range). We will assume
that X and Y commute as one assumes in materials science
that different positions observables are compatible. For sim-
plicity, we now assume that we have single-particle model on
finite-dimensional Hilbert space §) and that this is a model of
a closed system. Thus, we make the assumption that H is a

Hermitian matrix H = H'. Finally, we expect some manner
of locality, at least strong enough to imply ||[H, X]|| < 6 and
IlH, Y]] < 8 for some & > O that seems small relative to
the energy and length scales in the system (e.g., the lattice
constants in the two directions and bulk spectral gap).

Fragile topology is generally associated with a system be-
ing symmetric with respect to the combination of a spatial
symmetry and time reversal. Here, we consider a time-reversal
operator 7 that is antilinear and squares to +/ (spinless
models) or to —/ (models incorporating spin). Moreover, we
also want there to be a unitary operator C, that implements
rotation by 180°. We will have C5 = I and assume C; is real
(it is usually a permutation matrix). To keep the antilinear
operators visually distinct from the familiar linear operators,
we will use caligraphic font to denote such operators and
proper composition notation—o—where antiunitary operators
are involved.

Altogether, we consider here models where H has C; o T
symmetry but may lack either C; symmetry and/or 7 symme-
try. Thus, we introduce the composite operator

R=CoT, (AD)

which will be an antiunitary symmetry, and our main assump-
tion is

HoR=TRoH. (A2)

Position and time should be independent, so we assume that
T commutes with X and Y. As C, is rotation by a half-turn,
we assume that R anticommutes with both of these position
operators. Thus, we assume

RoX=—XoR and RoY =—-Y oR. (A3)

For the remainder, we will concentrate solely on the spin-
less case. Further, we assume that time reversal is the standard
choice of complex conjugation, i.e.,

Twv)=Vv (A4)

is a standing assumption from here on. We will also use the
notation /C(V) = V when convienient.

2. Antiunitary symmetries and real C*-algebras

To understand the distance from a given system to an
atomic limit, we will need the mathematical techniques de-
veloped using real C*-algebras over a series of papers from
last decade [80-82]. The relevant real C*-algebra here is the
algebra of all 2n x 2n matrices My, = My, (C), with an
involution operation similar to the transpose that is built from
R. We will use T to denote transpose, so M = MT = M

To give My, a real structure, we define a generalized invo-
lution M — M?* by

MP =R oM o R.

Since we have R o R = I, this simplifies to M» = RoM' o
R.Recallthat R =T oC, = C, 0 T. Since T denotes conju-
gation, we have R(v) = C,V. Therefore,

RoM oR(V) = R(M'C¥) = MGV = GM ' Cov
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and we find

MP =CM'C,. (AS)

That is, this extra operation that creates a real structure for
M,,, is the transpose intertwined with a rotation.

Remark Al. Let us look at the very special case where the
Hilbert space is C2. If there are two sites where rotation takes
one location to the other, then C; is

0 1
o= ]

The p operation becomes

f -l

Instead, if there is one site at the fixed point, say with two
orbitals, then C, will be

1o
C2=[0 1}’

and the p operation becomes the standard transpose

M !

It is easy to forget how these behave differently and that the
second case shows up as a subsystem whenever the full system
has a site at the center of rotation.

One axiom for real C*-algebras is that the generalized
involution, here p, needs to commute with the adjoint. We
know C, is Hermitian, so from Eq. (AS) we derive

(A6)

(A7)

M7 =G MT) ¢ =M 6 =M.

Considering again a 2D system with Hamiltonian A and
position operators X and Y, in real C*-algebra terminology,
we are assuming we have three Hermitian matrices, with X
and Y commuting and A almost commuting with the other
two, with the symmetry assumptions

XP=-X, Y’=-Y, and H” = H. (A8)

To clarify the symmetry on H, we have
H=RoHoR=H=H'Y = H=H"

since H is assumed to be Hermitian.

Definition Al. Suppose S is an antiunitary symmetry on a
Hilbert space 5. A triple of operators (X, Y, H) on §) is said
to have S~ symmetry if they are all Hermitian and

SoX=-X0S8, SoY=-YoS andSoH=HoS.

3. Converting from a standard physics setting
to a standard math setting

In a basis-free sense, any antiunitary that squares to +/
is equivalent to any other. Computer modeling of a physical
system, however, needs to be done in a fixed basis. To avoid
decimating our physical intuition, we want to select those
basis vectors so that they correspond to a single location. To be
able to utilize centuries of work in linear algebra, we want to
work in a basis where we can work with the standard transpose
and not M — MP”.

For our computer algorithms, we will need an explicit
unitary so that conjugation by that unitary converts M — M T
back to M +— MP". This is essentially as described in Sec. 2 of
Ref. [83], but this is an easy calculation, so we include it here
for completeness.

Lemma Al. Suppose R is real, unitary, and R? = I. Define

M® = RM'R.
Let
1
V2

This is unitary, and for any matrix M we have

W= —(R+il).

WMWHT =wM™WT.

Proof. The conditions on R imply R" = R and R" = R. To
see W is unitary, we calculate

QWIW = (R —i)(R+il) = 2I.

Note that W' = W and so W = WT. Also,

+ 1
IRW' = —iR(R—il)=W.

V2

The main calculation is then
(WMWHT =WIM™W = WRMTRW' = WM™WT.

|
For working with the given physical system, we need a
fixed W, namely,
! (G +il)
—— ).
V2

This is our choice to intertwine the two symmetry pictures,
meaning

W= (A9)

WMWHT =wMPW?. (A10)

Indeed, there are other choices for W to achieve this inter-
twining and we need a fixed choice to get a well-defined local
topological invariant.

The basic observables in the physical models we wish to
study will be triples in the following set:

M(R,2n) =1 (X,Y,H) € (My,)*

(X, Y, H)is R~ -symmetric
x |IH, X1l <€, I[H Y]l <€
L(X,Y, H) is invertible
(A11)

If the Hamiltonian actually commutes with position, then
X,Y, H) e My(R,2n) is an atomic limit in this class of
models.
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After a change of basis, so conjugation of everything by W,
this set becomes the following:

M (K, 2n) ={(X,Y,H) € (My,)*

(X, Y, H)is K™~ "-symmetric
x (IH, X1l <€, |[H, Y] <€
L(X,Y, H) is invertible
(A12)

Except for how the relevant matrices act on vectors, these
two sets have identical structure. They are isometric as metric
spaces, for example.

In Egs. (Al1) and (A12), L(X, Y, H) refers to the spectral
localizer formed from the triplet of matrices. This operator
will be formally introduced in Appendix A 4.

4. The commutative case to model atomic limits—part I

A system is in an atomic limit if the Hamiltonian commutes
with all of the position observables. This shuts down hopping
terms between any neighboring sites, so an excitation at a site
evolves as if the other sites do not exist. (Different orbitals at
the same lattice site can still be coupled in an atomic limit.) In
the next subsection, we classify all such commuting, locally
gapped systems, i.e., elements of M(R, 2n). Here, we first
examine the structure of M (K, 2n).

We need to understand the structure of three commuting
Hermitian matrices, two of which are purely imaginary and
the third is real. [Again, as K is just complex conjugation, and
(X,Y, H) is K™~ P-symmetric in M (K, 2n), the position
operators are purely imaginary. This is not physically relevant
in this form, but it is a convenient basis to explore some of
the mathematics.] As such, we need work with a real version
of the spectral theorem, and identify an invariant that makes
sense for a mix of real and imaginary matrices.

Theorem Al. If Ny, ..., Ny are commuting normal real n
X n matrices, then there is a real orthogonal matrix U, of
determinant one, so that

N; =UD;U",

with each D; block diagonal, with every block either 1 x 1
and real or a 2 x 2 block of the form

a —b
b a |’
with a and b real.

Proof. Except for the requirement on the determinant of U,
this can be found on p. 292, Theorem 12, of Ref. [84]. It also
follows easily from the version of the Schur decomposition
that applies to commuting real normal matrices. If det(U) =
—1, then we can multiply its first row by —1, and multiply the
first row and column of each X; by —1, to get this factorization
with the determinant of orthogonal matrix having the opposite
sign. |

Theorem A2. If X, Y, and H are commuting 2n X 2n
Hermitian matrices, with X and Y purely imaginary and H
real, then there is a real orthogonal matrix U of determinant

one so that

X =UXpU', Y=UYU", H=UHpU",

where Hp is a real diagonal matrix, and X and Y are block
diagonal with 2 x 2 blocks of the form

0 —ib
ib 0
with b real.

Proof. Notice that iX, iY, and H are normal and real.
Applying Theorem Al to these three provides a unitary U of
norm one so that

(A13)

iX =UXU", Y =Uv,U', and H =UHpU",

with Hp being real and diagonal, and X; and Y; being real
block diagonal with blocks of the form

a —b

b a |
Since H is Hermitian, Hp will be Hermitian. Let Xp = —iX,
and Yp = —iY). Since iX and iY are anti-Hermitian, the blocks
of X; and Y; will be anti-Hermitian. The blocks of Xp and Yp
will be Hermitian and purely imaginary, so will be of the form
in Eq. (A13). ]

In Eq. (A12), we noted that the spectral localizer for

(X, Y, H) must be invertible. We now pin down the choice of
the y; in the definition of the spectral localizer in M. (KC, 2n).
We use the Pauli spin matrices in a specific order and so we
will use the convention

LX,YH)=X®o0,+Y ®o0,+HQo,.

With this convention, L(X, Y, H) will be skew-symmetric (as
well as Hermitian) and so has a well-defined Pfaffian. The sign
of this Pfaffian is a natural invariant. The fact that the spectral
localizer is skew-symmetric forces its eigenvalues to appear in
pairs £a. The spectral localizer is 4n x 4n, so there will be an
even number of pairs and so its determinant will be positive.
This implies that its Pfaffian will be real, so the sign makes
sense.
More generally, we define

Layp)X, Y H)y=X —x) @0, + (¥ —y)®o;

+(H—-E)® o, (A14)

Only if x = y = 0 do we retain the symmetries needed to give
us a skew-symmetric localizer, so our local invariant is only
defined at the center of rotation.

Small examples show that the Pfaffian can come out posi-
tive or negative. The sign of the Pfaffian cannot change along
a path in M. (/C, 2n) since we have excluded the case where
the spectral localizer is singular.

Remark A2. A 2n x 2n matrix M that is both Hermitian
and skew-symmetric must have spectrum whose eigenvalues
come in pairs A [65,85]. Two invertible Hermitian, skew-
symmetric matrices Hy and H; can be connected by a path of
invertible Hermitian, skew-symmetric matrices if and only if
Pf(Hy) and Pf(H,) are of the same sign. Given a path H, of
Hermitian, skew-symmetric matrices, the sign of Pf(H;) can
only change when Pf(H,) = £./(det(H,)) is zero. This means
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the sign of Pf(H,) can only change when a pair of eigenvalues
crosses 0 in opposite directions.

Example Al. For any real «, 8, and y, consider the matri-
ces

[0 —ia o -ig [y o
e I A A

These commute, are Hermitian, with the first two antisymmet-
ric and the last symmetric. We find

0 —ip —iy —ia

iB 0 i —iy

iy —ia 0 i |

o iy —ip 0

LX,Y,H) =

whose Pfaffian is always positive, as it equals
(—iB)(iB) — (—iy)(—iy) + (—ia)(ia) = &® + B* + y7.
Since
(LX,Y,H) = (X*+Y’ +H) QL
=@+ +r) L,

this must have spectrum contained in the set {£(a” + B2 +
v?)}. Every skew-symmetric, Hermitian matrix has spectrum
that is symmetric across 0, so both eigenvalues must have
multiplicity two. In particular, L(X, Y, H) is invertible so long
as at least one of «, 8, or y is nonzero.

Example A2. For any real numbers y;, consider the
matrices

{0 0 10 0 _n
=[o o} =0 o} =3
As the off-diagonal elements are set to zero, these commute.
Trivially, X and Y are purely imaginary, and H is real. All are

Hermitian. Now we find that L(X, Y, H) can have negative
Pfaffian, as it equals

0
VJ. (A15)

—(=iyD)(=iy2) = 1y2.

We find that L(X, Y, H) is invertible so long as y; are both
nonzero. Indeed, its spectrum is {y;, £}
Now we show that the sign of the Pfaffian is the only
obstruction to connecting two triples in M (/C, 2n).
Proposition Al. If (X1,Y1,Hy) and (X3, Y», Hy) are in
My(KC, 2n), then these are connected by a path in My (K, 2n)
if and only if

sign(Pf(L(X1, Y1, Hy)) = sign(Pf(L(Xa, Y2, H>)).

Proof. Since SU(n) is connected, we can assume both
triples are block diagonal. In each 2 x 2 common block, the
triple looks like

0 —ic 0 —iB v 0
o (VN ip (VI 0 »m|

The commutativity assumption implies that either« = 8 =0
or y; = y». The blocks with y; = y, can all be connected by
a path of such blocks to the special case where @ = 8 = 0.
Thus, we can assume X = Y = 0 and H is diagonal.

Any common block of the form

o o) [oof Lo 4

is homotopic to

o o) oo [o )

as we see from the path

0 O 0 —isin@ cos 6 0
0o o} isinf 0 ’ 0 cosf |’
Since
o —17[t olfo 17" _[-1 o
1 01/0 —1||=1 Of |[oO 1
0 -1
1 0

is homotopic to I, in SO(2), we can assume blocks all look
like 0, O followed by

and

1 0 1 0]
0 —1]%[0 1]
Similarly,
00 —1 ol[=1 o o ol[o o -1 o]
o1 0 oflo 1 o ofllo 1 0 o
1 0 0 ollo o =1 ofl1t o 0o o
00 0o 1j][0 0 o 1][o 0 0 1
1 0 0 0
o1 0 0
=lo 0o 1 ol
0 0 0 1

so we can assume there is at most one block with opposite
signs. We can use a unitary of determinant one to swap that
block around, so every triple is homotopic to either (0, 0, /)
or (0,0, D), where D is diagonal with all diagonal elements
equal to 1 except the top-left element that is equal to —1. W

5. The commutative case to model atomic limits—part I1

With these results in hand for the nonphysical M. (K, 2n),
we are in a position to translate these results to the physically
meaningful M. (R, 2n).

Definition A2. Suppose (X,Y,H) is
M(R, 2n). We define the spectral localizer as
LoyeyX, Y, Hy =X —xI)®@ o, + (Y —yl) ® o,

+ (H —El) ® oy,

and when x = y = 0, we can define a local invariant, taking
values in {1, —1} = Z,,

te(X, Y, H)
= sign(Pf(Leey.ey(WXWT, WYW', WHWT))), (Al6)

where W is as defined in Eq. (A9). This is defined whenever
the local Clifford gap is nonzero and x =y = 0, where the
local Clifford gap is defined as

an element

1S oK, Y H) = omin(L iy (X, Y, H)),

i.e., the smallest singular value of the spectral localizer.
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In passing, we note that a more aesthetically pleasing for-
mula would be

(X, Y, H)
= sign(Pf(W ® I)Lo,0.5)(X, Y, H)(W ® D). (A17)

However, the formula in Eq. (A16) will generally yield a
slightly faster numerical algorithm.
We now consider a pair of examples to again show how
Ce(X,Y, H) can take values of both +1.
Example A3. Assume we have just two distinct sites that
are swapped by rotation, at locations (£, +8) with ¢ # 0 or

B +0.1f
_|=a 0 _|-B 0 |y O
=[5 r=[F R e-8
then WXWT, WYWT', and WHW are the matrices discussed
in Example A 1. These form a triple in M(R, 2) and so

(X, Y, H)=1

forany E # y.
Example A4. Let

10 0 10 0 o —ip
A I A R
These constitute a triple in My(R, 2). We find

0 o0 0 0
T T
wxw' =3 0l wrw <[00l

_|a+8 0
WHWT_[ 0 a_ﬁ}

and so
¢e(X,Y, H) =sign((a + B — E)(a — f — E)).
This equals —1 for E between « — § and o + B.

6. Connecting to an Atomic limit

We discussed earlier that two locally gapped, C,7-
symmetric systems of different invariant cannot be connected
by a continuous path of such systems. Here, we discuss a pos-
sible converse. We already know that atomic limits of the same
invariant can be connected, so will attempt to show that every
locally gapped C, T -symmetric system can be connected to an
atomic limit where this limit system is also locally gapped and
C,T-symmetric. A complication arises: if the starting system
(Xo, Yo, Hp) is in M. (R, 2n) and (X, Yy, H,) is that atomic
limit, we cannot expect (X;, Y;, H;) to stay in M.(R,2n).
Instead, we hope to prove that (X;, Y;, H,) stays in Ms(R, 2n),
where § is a bit larger than €.

Here, we offer only a sketch of a possible argument. The
estimates of how large § will be will depend on both € and
the size of the local gap. We anticipate that soon someone will
develop rigorous results about paths to commuting matrices
with these symmetries, for both open boundary conditions and
periodic boundary conditions (PBCs). The recent advances
[86] in matrix approximations that respect antilinear and lin-
ear symmetries should work in this setting. Earlier work, not
involving antilinear symmetries, indicates that this approxi-
mation only works when the “joint spectrum” of the given

matrices is two dimesional [87]. It is for this reason we start
with spectral flattening.

There are at least two ways to define a local gap of system
(X, Y, H). The quadratic gap is the square root of the smallest
singular value of

0X,Y,Z)=X>+Y*+H?,

while the Clifford gap is the smallest singular value of

H X —1iY

The Clifford gap at zero is denoted by t(9,0,0)(X, Y, H) in the
main text. Since L(X, Y, H) is an approximate square root of
an amplification of Q(X, Y, H), these two notions of local gap
are approximately equal.

The goal of the spectral flattening is to gain the approxi-
mate relation that makes this an approximate representation
of a sphere. We expect this reduction to help, as many related
commuting-matrix approximation problems require at most a
two-dimensional “joint spectrum” [87].

Suppose we are given (X,Y, H) in M(R,2n). Beyond
insisting that L(X, Y, H) is invertible, lets assume

¢ < (LKX,Y,H)* <G,
where 2¢ < g < G. Then,
& -2 <X*4+Y?+H?> <G+ 2e.

The usual spectral flatting adjusts only H, replacing it with
H = H(H?)~'/2. We cannot do this here, as open boundary
conditions mean there is no sizable gap expected in our / and
so the commutator of H with X and Y will likely blow up.
Instead, we define

O=X*+Y*+H?
and then

Xt — Q_l/4XQ_Z/4, Yt — Q—l/4YQ—t/4’

H[ — Q_I/4HQ_t/4«
These are continuous paths of Hermitian matrices. We next
check that we still have C,7symmetry. We can show, by

polynomial approximation to the square-root function, that
Q) = (") "/* and s

(Q—t/4),0 — (X2 + Y2 +H2)—l/4 — Q_t/4-
Given this, it is easy to show that

)(tﬂ — _)(tﬂ’ Y[P — _YP

t o Htp = Htp~
Again using polynomial approximation, one can show that
”[Hl"Xt]” <87 ”[Hl" Yl]” <8,

where § is larger than € but only depends on € and g. See
Theorem 3.2.32 of Ref. [88]. Thus, (X;, Y;, H,) is a continuous
path in M;(R, 2n). Since

Xt2 ~ Q—r/ZXZQ—z/Z’
etc., we find
(L(X,, Y, H)) ~ Q'

Here, we will need € small compared to g> to ensure that
(X:, Y, Hy) remains gapped for every ¢.
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Att = 1, we have an approximate relation,
X+ Y +HE~I.

As we explain in Sec. A of Ref. [69], we can map the coordi-
nate functions in C(S?) to these three matrices and extend to
get a map

@ : C(S?) = M,(C)

that behaves somewhat like a *-homomorphism. In this case,
the real structure M +— M?” will correspond to the real struc-
ture on C(S?) induced by a 180° rotation. This is very close to
the setting of Ref. [81]. The main result there tells us that two
almost commuting real orthogonal matrices are always close
to commuting real orthogonal matrices. What we have is a
similar mathematical situation, where we replace the role of
the two-torus with a rotation by the two-sphere with a rotation.
If the following conjecture is correct, we can derive the same
result but with X” = —X, etc., as we have the unitary W that
conjugates one picture to the other.

Conjecture Al. For any n > 0, there is a § > 0 such that,
for all n, given matrices X), Y1, and H; in M,,(C) with

X=X, ==X\, Y =Vi=-Y, H =H =H

and

IH, X0 <68, I[H, NI <6,

X2 +Y2+H —1|| <6,

there is a triple (X, Y», H,) of commuting Hermitian matrices,

with X)) = —Xo, ¥/ = Yo, H) = H,, X} + Y} + H} =1,
and

1X2 — X1l < m,

> =Yl <n, |H—Hll <n.

Assuming this conjecture true, we find that we can find
a commuting C,7 -symmetric system (X, Y>, H;) close to
(X1, Y1, Hy). As long as 7 is small, we can linearly interpolate
between (Xi, Y1, H;) and (Xy, Y2, H>) to complete the path.
The result is a path of locally gapped, C, 7 -symmetric systems
with limited growth in the commutators that terminates in an
atomic limit. By limited growth, we mean

2\[H;, X
A, x| < 2IH X0

or something similar.

7. Strong versus Fragile topology in the pseudospectrum

The invariant {g differs fundamentally from the local ver-
sion of the Chern number that looks at

Cr(x,, E) = 1sig(Lixy.p)(X, Y, H)).

The key difference is that our invariant can only be defined at
x =y = 0. Because C.(x, y, E) is not restricted tox =y = 0,
the Clifford spectrum (points in position-energy space where
the local gap is zero) of a Chern insulator is always sphere-
like. Specifically, if one travels on any ray out of the origin
(assuming a local gap at the origin), one will hit at least one
point in the Clifford spectrum. In math terms, we say that the
Clifford spectrum separates the origin from infinity.

In Fig. 4, we plot a portion near the origin of the y = 0 slice
of the Clifford pseudospectrum of the tight-binding model
considered in the main text next to the same for a Chern

Local Gap o g

(a) Haldane model
O W Max

1.0 -
0.5 -
0

-0.5 -

E/E,,

-1.0 -

X,

(b) TBG model

1.0 -
o 0.5
i
-0.5 -
-1.0
—Xm 0 Xm
Position x

FIG. 4. Clifford pseudospectrum—strong vs fragile topology.
Comparison of the Clifford pseudospectrum between models of a
Chern insulator and a fragile insulator. (a) A standard Haldane model
of a Chern insulator, with local gap shown along the slice y = 0.
(b) The TBG tight-binding model considered in main text, same
slice shown of the local gap. The blackest region in each is Clifford
spectrum, where the local gap is zero. In panel (a), we see a slice
of a spherelike region that completely surrounds the position-energy
origin (x,y, E) = (0,0, 0). In panel (b), the black region does not
completely enclose the origin.

insulator (the Haldane model). Of particular importance is the
portion that is completely black. This set is called the Clifford
spectrum. At first glance, the black parts in both plots look
spherelike, but a close look reveals a difference. The black
region in Fig. 4(b) does not entirely enclose the origin; one
can see separation between some of the black dots. Indeed,
we suspect that the unusual spectral flattening discussed in
Appendix A 6 may not be necessary. That is, the speckled look
of the Clifford pseudospectrum seems to indicate that the TBG
tight-binding model is already close to an atomic limit.

Local invariants that detect other strong invariants, at least
in classes A, Al, and All, also force the Clifford spectrum to
separate the origin from infinity. For example, see Fig. 9.8
in Ref. [66] for a horizontal slice (E = 0) of a spin-Chern
insulator. For a three-dimensional example in class All, see
Fig. 10.1 in Ref. [66], where now the image is only for
z=E = 0. For a four-dimensional example in class Al, see
Fig. 7.1 in Ref. [89]. In all cases, the Clifford spectrum has a
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No. of States Density of States

Momentum Space

FIG. 5. Twisted bilayer graphene morié lattice model and its
characteristic features. (a) Schematic representation for the unit-
cell lattice and the calculated band structure. The band gap width
is denoted by Eg, and Dirac points are shown at the K and K'.
High-symmetry points are I' = (0, 0), M = (27 /+/3a, 0), and K =
Qr/ J3a, 27 /3a). (b) Energy eigenvalues for the number of states
and its density of states under periodic and open boundary condi-
tions. Here, ¢ is an overall energy scale.

portion that surrounds the origin like a sphere, and this feature
is stable under perturbations within the symmetry class.

8. An explanation via K theory

The formula in Equation (A16) for the invariant ¢, could
have been deduced from Theorem 4.5 of Ref. [90]. That the-
orem is about explicit generators of the various KO and KU
groups of C(S? \ {np}, ), where o is the rotation by 180° that
fixes the removed North pole np and the South pole. This tells
us that L(%, §, 2) is a unitary with the correct symmetries to
represent a generator of

KO>(C(S*\ {np}, 0)),

so long as the y matrices are chosen correctly. Here, X and
so forth are the coordinate functions restricted to the sphere.
Notice, however, that all the formulas in this table look like a
localizer of the coordinate functions with varying choices of
y matrices. As such, it is often possible to guess the needed
index formulas, just by seeking the minimum size y matrices
that have the needed symmetries so the spectral localizer will
end up with the expected symmetries.

To get an invariant out of an element of a KO group of
C(5%) with some symmetry, we just replace the coordinate
functions with the matrix observables and arrive at an invert-
ible element in M,,(C) with some antiunitary symmetry. (In
some cases, more than one antiunitary symmetry is involved.)
Since the target algebra does not change as we change di-
mensions and symmetry class, all these invariants (so far) end
up with one of three calculations, the signature, sign of a de-
terminant, or sign of a Pfaffian. The mathematical formalism
here involves universal C*-algebras, as explained in Sec. 3 of
Ref. [91]. Fortunately, one can understand why these indices
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FIG. 6. LDoS of the finite TBG model. LDoS within (E = 0)
and outside (E = r) the bulk band gap. The magnitude of the LDoS
at specific energies is represented by the size of the green spheres at
each lattice sites.

can only change when the local gap closes without this ab-
straction; none of the signature, sign of a determinant, or sign
of a Pfaffian can change without an eigenvalue first becom-
ing zero as the spectral localizer is Hermitian (for Hermitian
systems).

There are explicit generators of KO groups calculated in
Ref. [83] for different symmetries on the two-sphere, and
research on this is ongoing. It is anticipated that pseudospec-
tral methods to create local topological invariants will work
with antiunitary symmetries that commute with some of the
position observables and anticommute with others, and either
commute or anticommute with the Hamiltonian.
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FIG. 7. LDoS for the TBG model at E = 0 with C, T -symmetry-
preserving disorder. Each plot shows the LDoS for a single disorder
configuration for each selected disorder strength S.
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FIG. 8. Susceptible nature of the TBG boundary states due to the
effects of disorder. LDoS at E = 0 and S = 0.85 for ten different
disorder samples.

APPENDIX B: THE TBG LATTICE MODEL, EDGE
STATES, AND THE EFFECTS OF DISORDER

In this section, we present calculations of edge states aris-
ing in the open boundary TBG model given in Eq. (10). In
Fig. 5(a), we show the bulk band structure of the four-band
model. Moreover, we show the energy spectra and density
of states of Eq. (12) under periodic and open boundary con-
ditions in Fig. 5(b), which are well matched except in the
bulk band gap. Under PBC, there is a band gap corresponding
to Egyp = 0.47, whereas under OBC, the spectrum becomes
gapless due to the presence of trivial edge states [21,49,92]
(see this Appendix).
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FIG. 9. Consistency of the local gap in the k-energy domain with
respect to changes in total system size.
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FIG. 10. Consistency of the local gap behavior in the «-
frequency domain with respect to changes in total system size and
the environment. (a) Local gap u calculation results for 2 x 2,4 x 4,
and 6 x 6 with PEC boundaries. Large-scale view of local gap n
calculation results for 2 x 2 with PEC boundary (b) and surrounded
by air (c).

In Fig. 6, we show the LDoS calculations for two energies
of the TBG model with open boundaries. The magnitude of
the LDoS at each site is represented by the size of the green
spheres. Unlike the LDoS at E =t within the bulk bands,
which is uniform across the entire system, the LDoS at E = 0
within the band gap is localized along the system boundary.
As discussed in the main text, these trivial edge states are
susceptible to disorder, in contrast to those that arise from
strong and stable topology such as chiral edge states in Chern
insulators. Figure 7 shows the evolution of the LDoS at E = 0
as the disorder strength S increases (using the same definition
of this parameter from the main text). Note that the localized
edge states, which are uniformly distributed along the sys-
tem boundary in the clean system (S = 0), become unevenly
distributed as S increases. These edge states disappear as the
system enters the trivial phase within a certain range of S, and
reappear with the reentrant fragile topological phase at strong
S. Figure 8 shows the LDoS at £ = 0 for different disorder
samples at S = 0.85. As clearly shown in this result, the edge
states are unevenly distributed along the boundary due to the
disorder.

APPENDIX C: A SCALING COEFFICIENT AND SIZE
DEPENDENCE OF A LOCAL GAP

Figures 9 and 10 illustrate the calculations of the local gap
W in the k-energy domain for lattice and continuum models,
respectively, indicating that these properties are consistently
maintained regardless of the total system size and the sur-
rounding environment. In Fig. 9, the local gap is calculated
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FIG. 11. Wilson loop calculations for photonic crystals with
fragile bands. (a) Unit cell of the photonic crystal with both C, and
T symmetries. Here, €; = 16, €, = 4, and €3 = 1. a is a period, and
r =0.2a,d = 0.4a, and G = 27 /a. (b) Wilson loop eigenvalues W,
for the TE-polarized bands 8 and 9, plotted as a function of k,. The
winding of the eigenvalues indicates the non-Wannierizablility of the
bands. The crossing of the eigenvalues at k, = 0 and 7 is enforced by
C, symmetry. (c) Unit cell of the photonic crystal with C, 7 but with
individually broken C, and 7 symmetries. Here, ¢, is the anisotropic
permittivity tensor given in the main text, e, =4,and e3 = 1. ais a
period, and r = 0.2a, d = 0.45a, and G = 27 /a. (d) Wilson loop
eigenvalues W, for the TE-polarized bands 8 and 9, plotted as a
function of k,. Under C,7 symmetry, the winding in the spectrum
is retained and the crossing of the eigenvalues is stable. However, the
crossing can occur at arbitrary k,.

within the energy range from —3 to +3 and « from 0 to 20¢ /a.
Considering the shift in homotopy invariant upon touching
u = 0, it is evident that u robustly protects the topology near
the bulk band gap at E = 0. This topological phase becomes
trivialized after the local gap touches zero near x = 12¢/a
as k increases. Note that the local gap behavior in the x-E
domain remains consistent despite changes in the spatial size
of the lattice, with x,,, = 8, 5, and 4. Similarly, Fig. 10 presents
calculations of the local gap for the continuum model.
Figure 10(a) shows the results for three different unit-cell
counts under PEC boundary conditions. Figure 10(b) demon-
strates the results at larger x scales for the PEC and air
boundaries. These results confirm the consistency of the spec-
tral localizer framework through the large local gap values

near the fragile band gap and the qualitative agreement in the
k- domain.

APPENDIX D: WILSON LOOPS FOR PHOTONIC
CRYSTALS WITH FRAGILE BANDS

A standard momentum-space method for characterizing
band topology is to compute the Wilson loop spectrum. The
Wilson loop operator over a closed loop [ is given by

W = Pexp (z‘ FAnato- dk>, o)
!

where A, ,(K) = (i k|iVkin x) 1s the Berry connection de-
fined over the space-periodic part of the eigenstates of interest,
un x(r). The Wilson loop operator is a matrix that encodes the
geometric phases traced by eigenstates along closed loops in
momentum space. Specifically, the eigenvalues of W repre-
sent the Berry phases accumulated along the loop. A nontrivial
winding in the Wilson loop eigenvalue spectrum signifies the
non-Wannierizability of the bands, indicating their nontrivial
topology. In the case of photonic crystals, this calculation
can be performed using the electromagnetic eigenmodes ex-
tracted from finite-element or plane-wave expansion methods
[52,55,64].

Here, we calculate the Wilson loop spectra for the PhC
structures studied in the main text. We compute the eigen-
values of V¥V along noncontractible paths in momentum space
with a fixed &, and plot them as a function of k. First, let
us consider the PhC with the unit cell shown in Fig. 11(a)
with both C, and 7 symmetries. The Wilson loop spectrum
for TE-polarized bands 8 and 9 is shown in Fig. 11(b). We
observe a double winding of the eigenvalues in the spec-
trum indicating that these bands are fragile. Moreover, the
crossings at k, = 0 and 7 are enforced by the presence of
C, symmetry. In Fig. 11(c), we consider the PhC studied in
the main text with broken C, and 7 symmetries but with
preserved C,7. The corresponding Wilson loop spectrum
shown in Fig. 11(d) continues to exhibits a double winding of
the eigenvalues indicating fragile topology. However, under
C,T, these crossings are generic and can occur at arbitrary
ky [25,29,32].

We emphasize that this momentum-space method is only
valid for infinite, spatially periodic structures and fails in the
presence of boundaries, gapless environments, or disorder.
Furthermore, position-space symmetry indicators, which can
identify fragile topology, require spatial symmetries that are
absent in the C, T structure considered above [57]. In contrast,
the position-space methods introduced in the main text are
applicable to gapless and finite heterostructures, such as those
shown in Fig. 4(d), as well as to systems with disorder, as
illustrated in Fig. 3.
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