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S1: Quasinormal mode and quasinormal expansion in

1D

In this section, we first introduce the concept of QNM and its corresponding properties in

1D systems, then derive the QNM expansion equation Eq. (4) in the main text.

For a 1D resonator in free space environment, QNMs are defined as the solution to

source-free eigenvalue problem

d2Ẽm (x)

dx2
+

(
ω̃m

c

)2

εr (x) Ẽm (x) = 0, (S1)

with outgoing boundary condition Ẽm (x = x1,2) ∝ e∓i(ω̃m/c)x, where {x1, x2} are two arbi-

trary points in the uniform environment.
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Due to the radiation loss and material absorption, all QNM frequencies in this resonator

should have negative imaginary part. The interplay of outgoing boundary condition and the

negative imaginary part leads to an exponentially diverging tail of the QNM field outside

the resonator. Therefore, QNM profiles extend to infinity and are intrinsically not square-

integrable.

Instead of integrating the wave function in the infinite space, it is possible to integrate the

wave function within a finite region enclosed by the two points x = x1,2 in the surrounding

free space. Multiply Eq. (S1) by Ẽn(x) then integrate over region [x1, x2], we get

∫ x2

x1

[
Ẽn (x)

d2Ẽm (x)

dx2
+

ω̃2
m

c2
εr (x) Ẽn (x) Ẽm (x)

]
dx = 0. (S2)

Integrating by parts, Eq. (S2) can be written as

[
Ẽn (x)

dẼm (x)

dx
− Ẽm (x)

dẼn (x)

dx

]x2

x1

+

∫ x2

x1

Ẽm (x)
d2Ẽn (x)

dx2
dx+

ω̃2
m

c2

∫ x2

x1

εrẼn (x) Ẽm (x) dx = 0.

(S3)

Subtracting
∫ x2

x1
dx Ẽm (x) · Eq. (S1) with m → n, then substituting the first derivative using

the outgoing boundary condition dẼm(x1,2)

dx
= ∓i ω̃m

c
Ẽm (x1,2), we obtain the orthogonality

relation,

(ω̃m − ω̃n)

[
i
Ẽm (x1) Ẽn (x1) + Ẽm (x2) Ẽn (x2)

(ω̃m + ω̃n) /c
+

∫ x2

x1

εrẼn (x) Ẽm (x) dx

]
= 0. (S4)

The term in the bracket is defined as the regularized inner product ⟨Ẽn|Ẽm⟩. Obviously, in

non-degenerate systems, ⟨Ẽn|Ẽm⟩ = 0 for n ̸= m and ⟨Ẽn|Ẽm⟩ can be nonzero only when

n = m, which defines the normalization of Ẽm.

It is worth noting that, although orthogonality relation Eq. (S4) is derived by integrating

from x1 to x2, such defined inner product is unique and independent of the choice of {x1, x2},

so long as {x1, x2} are both chosen in the uniform environment medium. The proof is

straightforward as the change in the surface term caused by different choice of {x′
1, x

′
2}
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cancels the change in the volume integral. Therefore, this inner product is unique and

carries physical significance for the QNMs.

With the inner product defined above, consider a harmonic polarization density P (x, t) =

P (x) e−iωt as the source to excite the resonator. The excited field E(x, t) is determined by

∂2E (x, t)

∂x2
− εr (x)

1

c2
∂2E (x, t)

∂t2
=

1

c2
∂2 [P (x) e−iωt]

∂t2
. (S5)

Expanding the electric field onto the QNM basis as E (x, t) =
∑

nAn (t)En (x) e
−iω̃nt, where

An (t) is the time-dependent amplitude of QNM Ẽn. Substitute it back into Eq. (S5), we

obtain ∑
n

−εrẼn (x)
1

c2

(
d2An

dt2
− 2iω̃n

dAn

dt

)
e−iω̃nt = −ω2

c2
P (x) e−iωt. (S6)

For near resonance excitation |ω− ω̃m| ≪ |ω|, the second derivative terms on the left side is

small relative to the first derivatives and thus can be ignored. This is known as the slowly-

varying envelope approximation (SVEA). By taking the inner product of both sides with

Ẽm, we obtain

dAm (t)

dt
= −

ω2
[∫ x2

x1
Ẽm (x)P (x) dx

]
2iω̃m⟨Ẽm|Ẽm⟩

e−i(ω−ω̃m)t. (S7)

Here, P (x) is assumed to be zero outside the resonator structure. After a gauge transform:

am (t) = Am (t) e−iω̃mt, the QNM expansion equations take the form of typical TCMT,

dam (t)

dt
= −iω̃mam (t)−

ω2
[∫ x2

x1
Ẽm (x)P (x) dx

]
2iω̃m⟨Ẽm|Ẽm⟩

e−iωt. (S8)

At steady state, the field would synchronize with the harmonic source and oscillate at the

same frequency: am (t) = ame
−iωt. The steady state amplitude of QNM Ẽm is thus given by

am =
ω2
[∫ x2

x1
Ẽm (x)P (x) dx

]
2ω̃m (ω̃m − ω) ⟨Ẽm|Ẽm⟩

. (S9)

S-3



Or if SVEA not adopted

am =
ω2
[∫ x2

x1
Ẽm (x)P (x) dx

]
(ω̃2

m − ω2) ⟨Ẽm|Ẽm⟩
. (S10)

Similar to the 1D case discussed above, QNMs in 3D are also defined as the eigensolution

of the source-free Maxwell equations with outgoing boundary conditions. The corresponding

inner product in 3D can be obtained from the unconjugated form of the Lorentz reciprocity

theorem.S1 In practice, outgoing boundary conditions are usually implemented with perfectly

matched layers (PMLs), which can damp out the exponential growth of QNMs away from

the resonator and make QNMs square-integrable.S2 The vanishing field at the outer surface

of PMLs leads to a zero surface integral in the unconjugated Lorentz reciprocity theorem,

and thus defines a complete and orthogonal basis formed by QNMs. The orthogonal inner

product defined with PMLs suffices to determine the expansion coefficients, but might have

slightly different form compared with other derivations due the the overcompleteness of

QNMs.S1,S3,S4

S2: QNM expansion: below first lasing threshold

In the following sections, the QNM expansion formalism is applied to the PALT theory. Here

we consider the same 1D coupled-cavity resonator structure described in the main text.

When the active medium is pumped at a relatively small pumping strength Dmax, the

pump-induced polarization density P (x) = Γ⊥ (ω)DP (x)E (x) can be treated as an external

driving source. Here Γ⊥ (ω) = γ⊥/ (ω − ωab + iγ⊥) is the dispersive gain curve. DP (x) =

DmaxWin (x) is the pump distribution, Dmax is the pumping strength and Win (x) is the fixed

pump profile. Since the excited amplitudes Eq. (S10) have a dispersive contribution which

is maximized when the frequency difference is small, considering the contribution from the

two modes near the gain center is sufficient to model this lasing behavior. So, the electric

field can be expanded onto this 2-QNM basis as E (x) ≈ aẼa (x)+ bẼb (x) and {a, b} are the

constant QNM amplitudes.
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Figure S1: The left column is the exact result from Green’s function, and the right column is
the result from QNM expansion. a-b, The trajectory of the complex perturbation frequency
as pumping strength Dmax increases. The inset shows a zoom-in plot of the boxed area. c-f,
The evolution of complex perturbation frequency as a function of pumping strength Dmax.
The square, star, and circle represent Dmax = 0, Dmax = Dth

1 , Dmax = Dth
c , respectively.

Dth
1 = 0.1619, Dth

c = 0.1646 for Green’s function result and Dth
1 = 0.1580, Dth

c = 0.1674 for
QNM expansion result. g-h, Single-mode lasing intensity as a function of pumping strength
Dmax. Dashed lines correspond to unstable solutions.
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Under the QNM expansion, the wave equation with P (x) = Γ⊥ (ω)DP (x)E (x) as a

source can be written as

(
ω̃2
a − ω2

)
a⟨Ẽa|Ẽa⟩ = ω2Γ⊥ (ω)Dmax

[(∫ x2

x1

Win (x) Ẽa (x)
2 dx

)
a+

(∫ x2

x1

Win (x) Ẽa (x) Ẽb (x) dx

)
b

]
,

(S11)(
ω̃2
b − ω2

)
b⟨Ẽb|Ẽb⟩ = ω2Γ⊥ (ω)Dmax

[(∫ x2

x1

Win (x) Ẽb (x)
2 dx

)
b+

(∫ x2

x1

Win (x) Ẽb (x) Ẽa (x) dx

)
a

]
,

(S12)

which are just linear homogeneous equations of {a, b}. The field integrals are constant in-

dependent of {a, b} and Dmax, so one can numerically calculate them with precomputed

QNM field profiles Ẽa,b (x). Finding a non-zero solution to Eq. (S11)-(S12) requires a van-

ishing determinant of the coefficient matrix. Numerically solving this equation of vanishing

determinant gives possible solutions of complex frequency ω, which is plotted in Fig. S1b.

Increasing pumping strength Dmax is equivalent to increase gain in this case.

Although the complex frequencies move toward the real axis as the pumping strength

increases, they cannot go beyond the real axis as this would otherwise result in unphysical

diverging field. The critical point is when one of those complex frequencies first reaches the

real axis, which marks the onset of the single-mode lasing. The pumping strength at this

point is labeled as the first lasing threshold Dmax = Dth
1 .

S3: QNM expansion: single-mode lasing and stability

analysis

In the main text, the single-mode lasing is analyzed in a single cavity edge emitting laser,

where only one QNM dominates the passive cavity response. In this section, we consider

the single-mode lasing in the coupled-cavity structure shown in Fig. 3, where both the two

QNMs contribute to the single-mode lasing simultaneously. The QNM expansion equations
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for single-mode lasing and its PALT stability analysis are derived.

Beyond the first lasing threshold, the pump-induced gain balances the intrinsic loss of

QNM and leads to stable single-mode lasing. Since the loss of the QNM is solely determined

by −Im (ω̃n), the complete gain-loss cancellation requires the gain to remain constant while

the pumping strength increases. This resistive mechanism in gain-pump relation is known

as the gain saturation and can be expressed as a saturated polarization density

d2E0 (x)

dx2
+
(ω0

c

)2
εr (x)E0 (x) = −

(ω0

c

)2 Γ0DP (x)

1 + |Γ0|2|E0 (x) |2
E0 (x) , (S13)

where Γ0 = Γ⊥ (ω0). Under the QNM expansion, the field is projected onto the 2-QNM basis

as E0 (x) = a0Ẽa (x) + b0Ẽb (x). Observing that P (x) is nonzero only inside the pumped

cavity, it is fair to assume that the two QNMs share the same field profile Eα (x) inside the

pumped cavity

Ẽa,b (x) = α1,2Eα (x) , for x ∈ Cact, (S14)

as plotted in Fig. 3d & e. This assumption is guaranteed by the weak spatial coupling limit

in such EP-laser.S5 As a result, the QNM amplitude equations for the single-mode lasing

operation can be simplified as

(
ω̃2
a − ω2

0

)
a0⟨Ẽa|Ẽa⟩ = ω2

0Γ0Dmaxα1 (a0α1 + b0α2)F
(
|Γ0|2|a0α1 + b0α2|2

)
, (S15)(

ω̃2
b − ω2

0

)
b0⟨Ẽb|Ẽb⟩ = ω2

0Γ0Dmaxα2 (a0α1 + b0α2)F
(
|Γ0|2|a0α1 + b0α2|2

)
. (S16)

Due to the nonlinear saturation term in the denominator in P (x), the integral is not a

constant but a function of {a0, b0},

F (y) =

∫
Cact

Win (x)Eα (x)
2

1 + |Eα (x) |2y
dx, (S17)

where y = |Γ0|2|a0α1+ b0α2|2 and the integral interval Cact is the pumped cavity. Therefore,

one only needs to precompute the QNMs Ẽa,b (x) for {α1, α2, Eα (x)} in the integral function,
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which is just a standard nonlinear eigenvalue problem. Consequently, Eq. (S15)-(S16) are

simply nonlinear equations of {a0, b0}, and thus can be solved using any basic nonlinear

root-finding solver, as shown in Fig. S1h. The conductivity σ of the right cavity is tuned

beyond the first threshold as illustrated in Fig. S2.

0 0.1 0.2
Dmax

0.06

0.07

0.08

0.09
Co

nd
uc

tiv
ity

 σ
 [ε

0c
/L

1]

Figure S2: The conductivity σ of the right cavity is tuned above the first threshold to ensure
near-EP operation.

The finite electric field of a single-mode lasing solution modifies the spatial distribution

of population inversion as the gain saturates, yielding a change in the evolution of nonlasing

modes as a function of pump strength. The behavior of the lasing medium operating in the

single-mode lasing regime can be understood using a linear stability analysis on the single-

mode lasing solution.S5 Here, we first perform the stability analysis on the single-mode

solution, then simplify it using the QNM expansion.

In presence of the single-mode lasing solution E0 (x) e
−iω0t defined in Eq. (S13), a per-

turbation in the electric field with time dependence e−i(ω0+ωd)t will induce another signal

with time dependence e−i(ω0−ω∗
d)t, where ωd is the complex perturbation frequency. Such

a perturbed electric field δE (x, t) = E1 (x) e
−iω1t + E−1 (x) e

−iω−1t is governed by a pair of

coupled linear equations,S5
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d2E1 (x)

dx2
+
(ω1

c

)2
εrE1 (x) = −

(ω1

c

)2
Γ+

[
(D0 (x) + χ+ (x)E0 (x))E1 (x) + χ− (x)E0 (x)E

∗
−1 (x)

]
,

(S18)

d2E−1 (x)

dx2
+
(ω−1

c

)2
εrE−1 (x) = −

(ω−1

c

)2
Γ−
[
(D0 (x) + χ∗

− (x)E0 (x))E−1 (x) + χ∗
+ (x)E0 (x)E

∗
1 (x)

]
,

(S19)

where ω1 = ω0 + ωd and ω−1 = ω0 − ω∗
d. Γ+ = Γ⊥ (ω1) and Γ− = Γ⊥ (ω−1) are the dispersive

gain factors. D0 (x) = DP (x) / [1 + |Γ⊥ (ω0) |2|E0 (x) |2] is the saturated population inversion

distribution at single-mode lasing operation. The additional two coupling coefficients are

determined as

χ+ (x) =
(1/2)Γ∥ (Γ+ − Γ∗

0)D0 (x)E
∗
0 (x)

1− (1/2)Γ∥ (Γ+ − Γ∗
−) |E0 (x) |2

, (S20)

χ− (x) =
(1/2)Γ∥

(
Γ0 − Γ∗

−
)
D0 (x)E0 (x)

1− (1/2)Γ∥ (Γ+ − Γ∗
−) |E0 (x) |2

. (S21)

Slightly beyond the first lasing threshold Dth
1 , this nonlinear eigenvalue problem of complex

ωd has solutions with negative imaginary parts, which means the corresponding perturbation

would decay exponentially. Therefore, the single-mode lasing solution remains stable.

As the pumping strength Dmax increases, the solutions of ωd moves on the complex plane

until one of the solutions reaches the real axis. A real eigenvalue of ωd indicates a non-

decaying perturbation and destabilizes the single-mode lasing solution. This critical point

of pumping strength is noted as the comb threshold Dmax = Dth
c .

Under QNM expansion framework, the perturbation fields are also expanded onto the

2-QNM basis: E±1 (x) = a±1Ẽa (x) + b±1Ẽb (x) and the corresponding nonlinear eigenvalue
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problem turns into

(
ω̃2
a − ω2

1

)
a1⟨Ẽa|Ẽa⟩ = ω2

1

∫
Cact

Ẽa (x)
{
Γ+

[
(D0 (x) + χ+ (x)E0 (x))E1 (x) + χ− (x)E0 (x)E

∗
−1 (x)

]}
dx,

(S22)(
ω̃2
b − ω2

1

)
b1⟨Ẽb|Ẽb⟩ = ω2

1

∫
Cact

Ẽb (x)
{
Γ+

[
(D0 (x) + χ+E0 (x))E1 (x) + χ− (x)E0 (x)E

∗
−1 (x)

]}
dx,

(S23)(
ω̃2
a − ω2

−1

)
a−1⟨Ẽa|Ẽa⟩ = ω2

−1

∫
Cact

Ẽa (x)
{
Γ−
[(
D0 (x) + χ∗

− (x)E0 (x)
)
E−1 (x) + χ∗

+ (x)E0 (x)E
∗
1 (x)

]}
dx,

(S24)(
ω̃2
b − ω2

−1

)
b−1⟨Ẽb|Ẽb⟩ = ω2

−1

∫
Cact

Ẽb

{
Γ−
[(
D0 (x) + χ∗

− (x)E0 (x)
)
E−1 (x) + χ∗

+ (x)E0 (x)E
∗
1 (x)

]}
dx.

(S25)

Despite the complicated nonlinear dependence of E0 (x), Eq. (S22)- (S25) are intrinsically

linear equations with respect to variables
{
a1, b1, a

∗
−1, b

∗
−1

}
. Therefore, nonzero solution of{

a1, b1, a
∗
−1, b

∗
−1

}
requires vanishing determinant of the coefficient matrix, leading to complex

eigenvalues ωd.

Noted that the integrals in Eq. (S22)- (S25) are also evaluated only inside Cact, the ap-

proximation of same field profile inside Cact applies and the linear equations can be simplified

as



ω2
1α1I1α1 ω2

1α1I1α2 ω2
1α1I2α

∗
1 ω2

1α1I2α
∗
2

ω2
1α2I1α1 ω2

1α2I1α2 ω2
1α2I2α

∗
1 ω2

1α2I2α
∗
2(

ω∗
−1

)2
α∗
1I

∗
3α1

(
ω∗
−1

)2
α∗
1I

∗
3α2

(
ω∗
−1

)2
α∗
1I

∗
4α

∗
1

(
ω∗
−1

)2
α∗
1I

∗
4α

∗
2(

ω∗
−1

)2
α∗
2I

∗
3α1

(
ω∗
−1

)2
α∗
2I

∗
3α2

(
ω∗
−1

)2
α∗
2I

∗
4α

∗
1

(
ω∗
−1

)2
α∗
2I

∗
4α

∗
2





a1

b1

a∗−1

b∗−1



− diag



(ω̃2
a − ω2

1) ⟨Ẽa|Ẽa⟩

(ω̃2
b − ω2

1) ⟨Ẽb|Ẽb⟩(
ω̃2
a − ω2

−1

)∗ ⟨Ẽa|Ẽa⟩∗(
ω̃2
b − ω2

−1

)∗ ⟨Ẽb|Ẽb⟩∗





a1

b1

a∗−1

b∗−1


= 0,

(S26)
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where I1−4 consist of some integrals of the single-mode lasing solution {a0, b0, ω0},

I1 = Γ+Dmax

{
F
(
|Γ0|2|a0α1 + b0α2|2

)(
−
Γ∗
− − Γ∗

0

Γ+ − Γ∗
−
+

|Γ0|2

|Γ0|2 + (1/2)Γ∥ (Γ+ − Γ∗
−)

Γ+ − Γ∗
0

Γ+ − Γ∗
−

)
+F

[
−(1/2)Γ∥

(
Γ+ − Γ∗

−
)
|a0α1 + b0α2|2

] (1/2)Γ∥
(
Γ+ − Γ∗

−
)

|Γ0|2 + (1/2)Γ∥ (Γ+ − Γ∗
−)

Γ+ − Γ∗
0

Γ+ − Γ∗
−

}
,

(S27)

I2 = Γ+Dmax

{
F
[
−(1/2)Γ∥

(
Γ+ − Γ∗

−
)
|a0α1 + b0α2|2

]
− F

(
|Γ0|2|a0α1 + b0α2|2

)}
×

(1/2)Γ∥
(
Γ0 − Γ∗

−
)

|Γ0|2 + (1/2)Γ∥ (Γ+ − Γ∗
−)

a0α1 + b0α2

(a0α1 + b0α2)
∗ ,

(S28)

I3 = Γ−Dmax

{
F
[
−(1/2)Γ∗

∥
(
Γ∗
+ − Γ−

)
|a0α1 + b0α2|2

]
− F

(
|Γ0|2|a0α1 + b0α2|2

)}
×

(1/2)Γ∗
∥
(
Γ∗
+ − Γ0

)
|Γ0|2 + (1/2)Γ∗

∥ (Γ
∗
+ − Γ−)

a0α1 + b0α2

(a0α1 + b0α2)
∗ ,

(S29)

I4 = Γ−Dmax

{
F
(
|Γ0|2|a0α1 + b0α2|2

)(
−
Γ∗
0 − Γ∗

+

Γ∗
+ − Γ−

+
|Γ0|2

|Γ0|2 + (1/2)Γ∗
∥ (Γ

∗
+ − Γ−)

Γ∗
0 − Γ−

Γ∗
+ − Γ−

)

+F
[
−(1/2)Γ∗

∥
(
Γ∗
+ − Γ−

)
|a0α1 + b0α2|2

] (1/2)Γ∗
∥
(
Γ∗
+ − Γ−

)
|Γ0|2 + (1/2)Γ∗

∥ (Γ
∗
+ − Γ−)

Γ∗
0 − Γ−

Γ∗
1 − Γ−

.

}
(S30)

Once the single-mode lasing solution {a0, b0, ω0} is known, I1−4 are just integral functions

of ωd, and so is the determinant of the coefficient matrix in Eq. (S26). Typical root-finding

methods can be applied to find the zeros of this determinant, which corresponds to the

complex perturbation frequency ωd. By tracing ωd while increasingDmax, the comb threshold

Dth
c can be found when ωd reaches the real axis, marked as circles in Fig. S1.
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S4: QNM-PALT: frequency comb solution for near EP

lasers

In this section, we apply the QNM expansion formalism to the EP comb generation and

make an accurate prediction of the EP comb solution.

Above the comb lasing thresholdDmax > Dth
c , the EP comb solutionE (x, t) =

∑
m Em (x) e−iωmt

are determined by the PALT equations,S5

d2Em (x)

dx2
+

ω2
m

c2
εr (x)Em (x) = −ω2

m

c2
Γ⊥ (ωm)

+∞∑
n=−∞

Dm−n (x)En (x) , (S31)

D̄ (x) = Dp (x)
[
¯̄I − (1/2)¯̄Γ∥

(
¯̄E† (x) ¯̄Γ+

¯̄E (x)− ¯̄E (x) ¯̄Γ†
−
¯̄E† (x)

)]−1

δ̄, (S32)

where ωm = ω0 +mωd is the frequency of the mth Fourier component Em (x). The dynamic

population inversion is expressed as D (x, t) =
∑

nDn (x) e
−inωdt. At equilibrium, the popu-

lation inversion induced by electric field are determined by Eq. (S32), where D̄ (x) and δ̄ are

column vectors with components
(
D̄ (x)

)
m

= Dm (x) and
(
δ̄
)
m

= δm0, δ is the Kronecker

delta. ¯̄E (x) is the electric field matrix filled with different Fourier components
(
¯̄E (x)

)
mn

=

Em−n (x).
¯̄Γ∥ and ¯̄Γ± are diagonal matrices with

(
¯̄Γ∥

)
mn

= δm−nγ∥/
(
mωd + iγ∥

)
and(

¯̄Γ±

)
mn

= δm−nΓ⊥ (ω±m).
¯̄I is the identity matrix and † stands for matrix conjugate trans-

pose.

Expanding all of the Fourier components onto the 2-QNM basis, Em (x) = amẼa (x) +

bmẼb (x), the QNM amplitudes {am, bm} are determined by

(
ω̃2
a − ω2

m

)
am⟨Ẽa|Ẽa⟩ = ω2

m

∫
Cact

Ẽa (x) Γ⊥ (ωm)
+∞∑

n=−∞

Dm−n (x)En (x) dx, (S33)

(
ω̃2
b − ω2

m

)
bm⟨Ẽb|Ẽb⟩ = ω2

m

∫
Cact

Ẽb (x) Γ⊥ (ωm)
+∞∑

n=−∞

Dm−n (x)En (x) dx. (S34)

For the integral inside Cact, we apply the same field profile approximation again and simplify
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the integrals as

∫
Cact

Ẽa,b (x) Γ⊥ (ωm)
+∞∑

n=−∞

Dm−n (x)En (x) dx ≈ Dmaxα1,2

∑
n

Mm−n (anα1 + bnα2) , (S35)

where Mm−n = M̄m−n and M̄ is a column vector defined as

M̄ = ¯̄Γ⊥

∫
Cact

[
¯̄I + ¯̄Ieff|Eα (x) |2

]−1

δ̄Win (x)E2
α (x) dx, (S36)

and ¯̄Ieff is the effective intensity matrix

¯̄Ieff =
1

2
¯̄Γ∥

[(
α1

¯̄A+ α2
¯̄B
)
¯̄Γ†
−

(
α∗
1
¯̄A† + α∗

2
¯̄B†
)
−
(
α∗
1
¯̄A† + α∗

2
¯̄B†
)
¯̄Γ+

(
α1

¯̄A+ α2
¯̄B
)]

, (S37)

and ¯̄A, ¯̄B are the amplitude matrices
(
¯̄A
)
mn

= am−n and
(
¯̄B
)
mn

= bm−n. The vectorial

integral in Eq. (S36) is integrated for each element separately.

Equations (S33)-(S34) are nonlinear integral equations of variables {am, bm, ω0, ωd} and

are generally solvable with the well-developed root-finding techniques. However, the presence

of Eq. (S36) poses a great challenge in practical numerical computation due to repetitious

evaluation of the matrix inverse at each position x and the subsequent integral for all matrix

elements.

To simplify this numerical problem, we recognize that the effective intensity matrix

Eq. (S37) is independent of space, thus can be diagonlized as space-independent eigenvalues

and eigenvectors, ¯̄Ieff = ¯̄P−1 ¯̄Λ ¯̄P . Substituting back into Eq. (S36), we obtain

M̄ = ¯̄Γ⊥
¯̄P−1

{∫
Cact

[
¯̄I + ¯̄Λ|Eα (x) |2

]−1

Win (x)E2
α (x) dx

}
¯̄P δ̄

= ¯̄Γ⊥
¯̄P−1 ¯̄F

(
¯̄Λ
)
¯̄P δ̄,

(S38)

where ¯̄F
(
¯̄Λ
)
is a matrix generalization of the scalar function

[
¯̄F
(
¯̄Λ
)]

m,n
= F

[(
¯̄Λ
)
m,n

]
.

Compared with the original expression in Eq. (S36), the space-independent matrix diagonal-
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ization in Eq. (S38) is performed only once and the integral is computed only for the diagonal

elements, while the space-dependent matrix inverse should be performed everywhere inside

the integral interval Cact and the integral is computed for every element in the matrix.

S5: Padé approximant

Although the repetitive matrix inverse in Eq. (S36) is bypassed by a diagonalization approach

in Eq. (S38), the evaluation of the integral function F (y) in Eq. (S17) can be the bottleneck

of a computation. In particular, the finite-difference simulation of this EP comb needs an

abnormally small spatial grid size for convergence,S5 which makes the integral computation

even slower. Here we propose a numerical trick, which is a rational expansion of the integral

function, to approximate the integral efficiently.
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Figure S3: a, d Absolute value of F (y) on the complex y plane. b, e Phase of F (y) on
the complex y plane. c, f Absolute value of F (y) with real variable y. The first row are
evaluated through the original integral function while the second row are evaluated as its
Padé approximant. The uneven singular behavior in a-c is because of the finite sampling
rate in the discretized electric field Eα(xi).
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From the definition in Eq.(S17), F (y) is analytic on the entire complex y plane, except

for a branch cut on the real axis y = −1/|Eα (x) |2, where x ∈ Cact. As illustrated in Fig. S3

a-c, F (y) is a smooth function across the complex y plane with divergent behavior on part

of the real axis. In Fig. S3 a & c the non-analyticity seems discrete due to the discrete

finite-difference data of Eα (x), and it should be continuous in general.

In the general context of nonlinear optics, the nonlinearity is always small and treated

as perturbation.S6 Therefore, a Taylor series expansion of the nonlinearity can be adopted,

leading to the well known χ(2), χ(3), and higher order χ(n) effects. However, the nonlinearity

in laser medium originates mainly from the mode competition caused by gain saturation,

which could deprive most of the gain and leave very little gain for the rest modes when

operating at high intensities. Such vanishing behavior of F (y) at infinity intensity falls

outside the radius of convergence of Taylor expansion thus cannot be captured by a Taylor

series expansion in general.

Instead of a Taylor series expansion, here we use a rational function expansion

F (y) =

∫
Cact

Win (x)Eα (x)
2

1 + |Eα (x) |2y
dx ≈ P (y)

Q (y)
(S39)

to estimate the function value. P (y), Q (y) are polynomial function of y. Such estimation

is also referred to as the Padé approximant of F (y).S7,S8 We find that the the simplest form

of F (y) ≈ λ
1+µy

is sufficient to provide a rather good estimate of F (y). {λ, µ} are complex

constants and can be fitted from some precomputation. For instance, one can evaluate F (y)

for real valued y then fit the result with F (y) ≈ λ
1+µy

, as illustrated in Fig. 3a-b in the main

text.

As shown in Fig. S3d-f, the new rational function F (y) ≈ λ
1+µy

only has one single pole

y = −1/µ around the negative real axis, which serves as a weighted average over all the

poles of original F (y). The error distribution of this estimation is plotted as contour lines

on the complex y plane in Fig. S4. An accuracy of 10% is achieved for most regions with a

S-15



2%
4%

6% 6%

8%

8%

10%

10%

20%40%
80%

-5 104 0 5 104

Re[y]

-5 104

0

5 104

Im
[y

]

0

20%

40%

60%

80%

100%
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value: error = | (Fapproximant − Foriginal) /Foriginal|. The red pentagrams marks the variables of
F (y) in the comb solution shown in Fig. 4f.

positive real part. Moreover, the practical complex variable y in laser operations resides near

the positive real axis, which leads to much higher accuracy. For instance, in the single-mode

lasing operation, y = |Γ0|2|a0α1+b0α2|2 is real, this yielding high accuracy. For the EP comb

solution, the values of y, which are the eigenvalues of the effective intensity matrix ¯̄Ieff, are

plotted as red pentagrams in Fig. S4. All of these eigenvalues are enclosed by the contour

line of 2% relative error. Such a low level of error ensures a good estimation of F (y), leading

to an accurate and efficient way to evaluate the integral function and perform PALT-related

computations.

S6: 1D FDTD simulation of MB equations

In this section, we present the numerical challenges in FDTD simulation of MB equations.

The intrinsic high sensitivity of EP also amplifies numerical error, requiring an unusu-

ally high precision when using FDTD to capture intricate laser dynamics in MB equations.

Fig. S5 a and b shows the result of an FDTD simulation with 20 pixels per wavelength

in medium, which is enough for typical FDTD simulations. Such FDTD simulation con-

verges to a single-mode lasing solution, which should be unstable at this pumping strength
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as predicted by stability analysis. As we increase the discretization resolution from 20 to 200

pixels per wavelength in medium, the FDTD simulation converges to a clear comb solution,

showing great agreement with respect to the QNM-PALT result. From Fig. S5 e, one can

conclude that MB equations FDTD simulation of EP comb typically requires a small dis-

cretization error for convergence, thus an extremely long simulation time is inevitable. Since

the simulation time of FDTD scales with respect to the total number of pixels, quadratically

for 1D, cubically for 2D, and quartically for 3D, the simulation in 2D and 3D structures with

a small discretization error is obviously unscalable.

S7: QNM-PALT for a 2D coupled-disk resonator system

In this section, we present the application of the QNM-PALT framework to the 2D coupled-

disk system illustrated in Fig. 5.

Fig. S6 a shows the trajectory of the complex eigenfrequencies under linear gain, mani-

festing typical near-EP behavior. Both the two frequencies begin with low loss QNMs when

no pumping applied, then move toward the real axis until mode b reaches the real axis,

marking the first lasing threshold. Beyond the first lasing threshold, the gain saturates and

leads to stable single-mode lasing action, as illustrated in Fig. S6 b. Meanwhile, the stability

analysis of the single-mode lasing solution predicts two complex frequencies stemming from

the original two QNMs under the real axis, plotted as a function of the pumping strength

Dmax in Fig. S6 c. As Dmax further increases, one of the two frequencies reaches real axis,

corresponding to the comb threshold. Beyond the comb threshold, one can obtain the comb

spectrum Fig. S6 d by solving the purely algebraic QNM-PALT equations directly.
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