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ABSTRACT: One of the key features of lasers operating near
exceptional points (EPs) is that the gain medium can support an
oscillating population inversion above a pump threshold, leading to
self-modulated laser dynamics. This unusual behavior opens up
new possibilities for frequency comb generation and temporal
modulation. However, the dynamic population inversion couples
signals with different frequencies and is difficult to capture using
conventional temporal coupled-mode theory (TCMT) based on
stationary saturable gain. In this paper, we develop a perturbative
coupled-mode analysis framework to capture the spatial-temporal
dynamics of near-EP lasers. By decomposing discrete frequency
generation into multiple excitations of resonant modes, our analysis
establishes a minimal physical model that translates the local
distribution of dynamic population-inversion into a resonant modal interpretation of laser gain. This work enables the exploration of
unique properties in this self-time-modulated systems, such as time-varying scattering and nonreciprocal transmission.
KEYWORDS: non-Hermitian, photonics, laser theory, frequency comb, quasinormal mode, coupled-mode analysis

1. INTRODUCTION
Non-Hermiticity is a crucial feature of optical systems due to
the ubiquity of both material absorption and radiative losses to
the surrounding environment.1 Among various non-Hermitian
effects, exceptional points (EP)�spectral singularities in non-
Hermitian systems�are crucial to understand because they
fundamentally alter a system’s response and promote a variety
of optical applications, such as enhanced sensitivity and chiral
control of light.2−11 Lasers have been an ideal platform to
demonstrate key characteristics of EPs as they exhibit a natural
way to implement spatially nonuniform gain and loss, as is
required for EP formation.12−16 Recent studies found that the
interplay between EPs and lasers reveals exciting opportunities
to control laser dynamics, such as loss-induced lasing,17 reverse
pump dependence,15,18 and robust single-mode operation.19,20

Generally, only one mode among the paired resonances of an
EP lases at a single time and so the carrier populations of the
gain medium can be approximated as stationary. In these cases,
the other latent resonances(s) of an EP can lead to undesired
laser line width broadening while maintaining single mode
operation.21−23

However, if a laser is driven sufficiently close to an EP, the
static gain approximation is expected to fail.24−26 In this near-
EP regime, the time-scale of any relaxation oscillations due to
spontaneous emission can be sufficiently long-lived that these
spontaneous emission events, subsequently amplified, com-
pletely destabilize the system’s single mode operation. In such

a case, even though no other cavity resonance reaches its lasing
threshold, the system will still spontaneously evolve into a
frequency comb with dynamic carrier populations. Heuristi-
cally, the beat notes generated by oscillating inversion
interacting with the lasing mode destabilizes the stationary
laser gain and induces coherent oscillations of the nonresonant
population inversion inside the gain medium, a process that is
enhanced by the spatial coalescence of two modal profiles
guaranteed by their proximity to the EP, and generating a
cascade of new frequencies resulting in a self-generating
frequency comb. However, the appearance of a self-generated
frequency comb presents a problem for modeling such systems
because the combined spatial-temporal complexity involves
nonlinear interactions across two different time scales. Typical
laser models (Figure 1) such as the steady-state ab initio laser
theory (SALT) and the rate equation description fail to model
the dynamic gain near EP or do not yield analytic prediction
for the comb’s behavior,26−30 because they either rely on the
assumption of static population inversion (SALT) or over-
simplify the geometry that is crucial for achieving the EP-
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condition (rate equation approach). There have been attempts
combining TCMT formalism with rate equation description of
the carrier dynamics to model typical laser character-
istics,25,31−36 but only few of them fully accounts for the
spatiotemporal dependence of the population inversion. As the
spatial distribution of population inversion is subject to
saturation and thus nonuniform in space, ignoring the
saturation in space-dependent population inversion only
predicts linear and near threshold or incomplete saturable
lasing features.25,31−35 The temporal nonstationary population
inversion also excludes the existing TCMT framework for
static saturable absorption as the gain medium manifest
dynamic carriers behavior.36 The only previously proven
approach to fully account for such dynamic gain is via brute-
force finite-difference time-domain (FDTD) simulations of the
Maxwell-Bloch (MB) equations across the entire laser cavity,24

which requires unusually high numerical precision due to the
high sensitivity of EP phenomena to numerical error. Due to
such unusually high numerical precision needed for discretiz-
ing this near-EP system, the rigorous TCMT approach capable
of handling full spatialtemporal dependence of the population
inversion would encounter great numerical challenge and thus
become unscalable for realistic near-EP laser cavity design.37

Although the periodic-inversion ab initio laser theory (PALT)
analysis on MB equations provides a quantitative method for
numerical computation,24 it does not yield an intuitive model
to explain how frequency combs are generated via local laser
nonlinearities.
Here, we develop a rigorous coupled-mode analysis of the

laser gain by bridging the local distribution of population
inversion with the resonant modal interaction near an EP. In
doing so, we also demonstrate that the spatial nonuniformity
induced by hole-burning in both the single-mode laser and the
EP-laser can be accurately treated using a Pade ́ approximant.
The response of the passive cavity to the pump-induced
polarization is decomposed into discrete excitations of the
passive resonant modes, which is known as a quasinormal
mode (QNM) expansion.39−43 The quasinormal coupled-
mode description for such EP-lasers, that we will refer to as
QNM-PALT, can be expressed as integral equations with only
the expansion coefficients and lasing frequencies as unknowns.

These integral equations establish the connection from local
distribution of population inversion to the cavity modal
interaction and quantitatively describe the enhancement of the
spatial overlap between the two EP-modes with the dynamic
gain. Under the weak spatial coupling limit, which is
automatically satisfied due to the EP-laser condition,24

combined with the Pade ́ approximant of the integral function,
QNM-PALT can be expressed as a purely algebraic problem of
the expansion coefficients without spatial dependence.
Compared with other frameworks for modeling lasers,
QNM-PALT inherits both the rigor of the MB equations
and conciseness of temporal coupled-mode theory (TCMT)
analyses, while overcoming the difficulties stemming from
dynamic gain in standard phenomenological TCMT ap-
proaches that assume static laser gain.6,44−46 This simple
physical model combined with its computational efficiency
enables further exploration of EP lasers, including novel laser
properties due to the self-time-modulation and optimization
for compact source of coherent frequency combs. The dynamic
gain modeled by this QNM-PALT framework also opens new
opportunities for introducing time modulation to optical
systems,47−50 for instance, the bistability and cascade of
period-doubling have been found to exist in such system.51

Moreover, the Pade ́ approximant we adopt here provides an
efficient series expansion technique to simplify the saturable
laser nonlinearity and is expected to simplify the description of
gain competition in multimode lasers.28

The remainder of this paper is organized as follows: In
Section 2, we provide the theoretical background of QNM and
the corresponding QNM expansion equations. In Section 3, we
apply the QNM expansion formalism to the single-mode lasing
in a 1D system and introduce the Pade ́ approximant, a series
expansion to simplify the field expansion integral. In Section 4,
we apply the QNM expansion method to the general frequency
comb solution in a 1D multilayer near-EP laser system. In
Section 5, we apply the developed framework to a 2D near-EP
coupled-disk laser system. We conclude in Section 6.

Figure 1. Schematic of typical laser models. The rate equation phenomenologically describes the light-matter interaction in time while ignoring the
geometry of laser cavity.38 W12 and W21 are the upward and downward stimulated-transition probabilities and W12 ≡ W21. ΔN = N2 − N1 is the
population inversion and ΔN0 is the pumped thermal-equilibrium population inversion without external electric field. The Maxwell-Bloch
equations couple electric field with local two-level atoms, and reduce to a nonuniform perturbation on the refractive index δn(x) caused by spatial
hole burning in the static-inversion regime.28 Typical TCMT uses a simple saturable gain g to model the complex laser dynamics.6
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2. THEORETICAL BACKGROUND�QUASINORMAL
MODES AND QUASINORMAL MODE EXPANSION

QNMs are the eigenmodes of non-Hermitian open systems. In
a nondispersive passive system consisting of resonators that
may be absorbing and are surrounded by free space, the QNMs
can be defined in terms of the vectorial electomagnetic field
[Ẽ(r), H̃(r)]. Specifically, the nth QNM is defined as the
solution of the source-free wave equation,

E r r H ri( ) ( ) ( )n n n× = (1)

H r r E ri( ) ( ) ( )n n n× = (2)

with outgoing boundary conditions.39,52,53 Here, ε(r) and μ(r)
are the permittivity and permeability of the passive resonator
system, which are generally complex to account for possible
material absorption. The eigenvalue ω̃n = ωn − iγn is the nth
QNM frequency and is also complex. Due to the causality
constraint that analyticity should be maintained in the upper
half plane of complex frequency,54 all QNM eigen-frequencies
should have a negative imaginary part, i.e., γn > 0. The open
boundary condition implies that all waves must be outgoing
waves beyond some surface of last scattering, e.g., a spherical
outgoing wave of the form exp [−iω̃n(t − r/c)] /r, where c is
the light speed in free space. The combination of causality and
the outgoing boundary condition leads to an exponentially
diverging field at infinity exp [(γn/c) r]. Therefore, such
QNMs are generally not square-integrable. To overcome this
difficulty and construct an orthonomal condition necessary for
mode expansion, a variety of regularization schemes have been
developed to mediate this divergence.55−61 In general 3D
systems, a perfectly matched layer (PML)-based scheme is
usually applied to define the inner product39,40

E E E E H H dVn m 3D PML n m n m
PML

| = [ · · ]
(3)

where the integration domain Ω ∪ ΩPML consists of the
physical finite domain Ω and the PML domain ΩPML
implementing the outgoing boundary condition. The uncon-
jugated multiplication and additional boundary term within
ΩPML come from the nondegenerate non-Hermiticity62 and the
openness40 of this resonator system, respectively. The inner
product in eq 3 satisfies the biorthogonality relation ⟨Ẽn|Ẽm⟩ =
δn,m, where δn,m is the Kronecker delta.
With the rigorously defined QNM inner product eq 3, a

space-dependent field excitation problem can be decomposed
into a few space-independent modal excitation contributions.63

A resonator subject to a source excitation P(r, t) = ∫ P (r, ω)
e−iωtdω within the resonator generates electromagnetic field [E
(r), H (r)] through

E r r H ri( , ) ( ) ( , )× = (4)

H r r E r P ri( , ) ( ) ( , ) ( , )0× = [ + ] (5)

Here, the polarization P(r) has the same unit as electric field
E(r) to be consistent with the discussions of laser dynamics in
subsequent sections.24 P(r, ω) could have arbitrary spectrum
distribution and the excited electromagnetic field [E(r, ω),
H(r, ω)] would respond according to eq 4. Expanding the
fields [E(r, ω), H(r, ω)] onto the normalized QNM basis as
E(r, ω) = ΣnanẼn(r, ω) and H (r, ω) = ΣnanH̃n(r, ω), such
space-dependent partial differential equations determine a
QNM amplitude as39,40

P r E r
a

dV
( )

( , ) ( , )
n

n

n
=

·
(6)

Figure 2. Validating the Pade ́ approximation using a single-mode laser in 1D cavity. (a) The cavity is bounded on one side by a perfect mirror and
open to free space on the other side. The refractive index of the medium is n = 1.5 and the length of the lasing medium is L. Parameters of two-level
atoms are ωab = 40c/L and γ⊥ = 4c/L. The pump profile here is chosen uniform inside the laser cavity. (b) Comparison of the original integral
function and its Pade ́ approximant. Pade ́ approximant provides an accurate approximation as the relative error lies within 2%. (c) The relation
between the field intensity at certain point x = x0 = 0.24L away from the left mirror inside the laser cavity and the pumping strength Dmax computed
from SALT and QNM expansion, respectively. (d) The intensity distribution across the laser cavity at Dmax = 0.08 from SALT and QNM
expansion, respectively.
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The domain of integration spans over the space where P(r) is
nonzero, which should be confined inside the resonator
structure.39,56 The Lorentzian frequency dependence in eq 6
manifests typical resonant response to a real frequency
excitation.
It is worth noting that the expansion above is rigorous for

fields within the resonator structure, given the completeness of
the entire set of QNMs.39,40 However, a finite subset of the
complete infinite set is always applied in practice, which
inevitably introduces limitations and is only valid under certain
restrictions.56 For this particular problem of atomic emission in
laser systems, the contribution of higher-order modes is
automatically suppressed via the narrow-band laser excitation,
and there is no direct coupling from the effective source P(r)
to the free-space continuum since the lasing atoms reside
within the laser cavity. Therefore, the two limitations are
automatically mediated here, leading to a physically sound and
mathematically safe field decomposition into a small number of
QNMs.56 Additionally, the excited field E(r, t) of non-
monochromatic source P(r, t) = ∫ P(r, ω)e−iωtdω can be
obtained by superposing a series of monochromatic response
E(r, ω) directly, due to the linear nature of Fourier
transform.39,64

3. SINGLE-MODE LASING UNDER QNM EXPANSION
USING THE PADÉ APPROXIMANT

In this section, we use the QNM expansion framework to
investigate the single-mode lasing solution of the ab initio MB
equations and show how the Pade ́ approximant can be used to
accurately account for spatial hole burning. Specifically, the
pump-induced polarization density P(x) is considered as the
perturbation and the electric field can be reconstructed by the
QNM expansion.
Consider a 1D microcavity edge emitting laser shown in

Figure 2a.65,66 The laser medium is modeled as an ensemble of
two-level atoms and the light-matter interaction can be
described semiclassically by the MB equations.27,28 When
subject to external pumping, a nonzero population inversion
builds up and generates a pump-induced polarization density
P(x) in the laser medium, providing gain to the laser cavity. As
a result, such pump-induced gain begins to compensate for the
intrinsic loss of the cavity resonances as the pumping strength
increases, until the loss of one QNM is completely
compensated. At this point, the original complex QNM
frequency ω̃ shifts to a purely real lasing frequency, and this
critical pumping strength is known as the first lasing threshold
D1
th. Beyond this lasing threshold, the electric field saturates the

gain, thus modifying the distribution of polarization non-
linearly, which, in turn, yields a finite electric field from the
active cavity. At equilibrium, single-mode lasing operation
turns on with a stationary saturated population inversion
distribution, D(x) = [1 + |Γ⊥(ω0) |2|E0 (x) |2]−1 DP (x), where

( )
iab

= + stands for the normalized gain curve and

DP(x) = DmaxWin (x) is the space-dependent pumping
strength. Here, Dmax represents the effective pumping strength
and Win (x) is a normalized window function for the pumping
profile, which is zero outside the pumped cavity. Typically,
Win (x) is not necessarily flat within the laser medium and can
be tailored to be spatially nonuniform to boost the laser power-
efficiency.67 ω0 and E0 (x) are the real frequency and electric
field determined by the nonlinear single-mode lasing equation,

d E x
dx c

x E x
c

D x E x
( )

( ) ( ) ( ) ( ) ( )r

2
0

2
0

2

0
0

2

0 0
i
k
jjj y

{
zzz i

k
jjj y

{
zzz+ =

(7)

The intensity-dependent term in D(x) accounts for the
system’s spatial-hole burning, which is the key to gain
saturation and multimode lasing operation.
In such 1D multilayer structure, the QNM inner product has

a simple analytic form of

E E x E x E x dx

i
E x E x E x E x

c

( ) ( ) ( )

( ) ( ) ( ) ( )
( )/

n m
x

x

r n m

n m n m

n m

1D

1 1 2 2

1

2
| =

+ +
+ (8)

where x1,2 marks the edge of the resonator in the background
medium. Accordingly, the expansion coefficients can be
expressed as (see derivation in Supporting Information S1)

a
E x P x dx

E E

( ) ( )

( )n
x

x
n

n n n

2

2 2
1D

1

2

=
| (9)

Under the QNM expansion framework, the spatial coupling
is completely included in the QNM profile Ẽm (x), leaving only
the QNM-amplitudes an and frequency ω0 as unknowns.
Ideally, the infinite set of QNMs forms a complete basis for
dispersion-free permittivity εr (x), so its result should be
equivalent to directly solving eq 7. In practice, off-resonance
QNM contributions decay according to a Lorentzian function
(ω̃m

2 − ω2)−1, so only near-resonance QNMs dominate the
cavity response. For an excitation near a single resonance ω ≈
ω̃n, the single-mode lasing eq eq 7 can be simplified by the
QNM expansion eq eq 9 with single QNM contribution E0(x)
≈ anẼn (x) as,

28

E E D F a( ) ( ) ( )n n n n
2

0
2

0
2

0 max 0
2| = [| | ] (10)

where F y dx( ) x E x
E x ycav

Win( ) ( )
1 ( )

n

n

2

2=
+ | |

is an integral function defined

across the cavity.
Equation 10 is a nonlinear integral equation of unknowns

{an, ω0}. Typical iterative nonlinear methods for solving such
an integral equation require multiple evaluations of the original
function, which makes the calculation of F (y) a bottleneck of
computation. Here, we find that a rational function expansion
suffices to provide an accurate estimation of the integral
function F (y),

F y
x E x
E x y

dx
y

( )
Win( ) ( )
1 ( ) 1

L

0

2

2=
+ | | + (11)

This is referred to as the Pade ́ approximant of order [0/1] for
function F (y),68,69 where the series coefficients {λ, μ} can be
numerically fitted from some precomputed function values, as
shown in Figure 2b and discussed in Supporting Information
S5. Therefore, eq 10 for single-mode lasing reduces to a purely
algebraic equation under a Pade ́ approximant eq 11. The
pump-dependent intensity and mode pattern are plotted in
Figure 2c,d for single-mode lasing solutions using the QNM
expansion and direct FDFD method without approximation,29

respectively. By comparing results of the two methods, one can
conclude that QNM expansion accurately reproduces the
single-mode lasing solution. The residual quantitative error
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comes from the neglect of other QNMs’ excitations and the
use of Pade ́ approximant.
Notably, the nearly linear relationship between the laser

intensity and the pumping strength is reflected in both results
in Figure 2. This phenomena can be readily derived from
conventional interpretation of static saturable gain g = g0/(1 +
I/Isat). Stable lasing requires complete gain-loss cancellation g
= l, thus a linear dependence g0 = (1 + I/Isat) l is established
between the intensity I and the unsaturated gain g0, which is
proportional to the pumping strength Dmax, as the loss rate l
can be considered constant for a given lasing mode. However,
the description of saturable gain sometimes oversimplifies the
gain mechanism and cannot directly connect to the ab initio
description of MB equations, in which saturation appears as a
local property known as spatial hole burning and extends the
design space for laser cavities.67 Meanwhile, the linear
dependence is also not straightforward from the ab initio
single-mode lasing eq 7.
By approximating the lasing mode as a single QNM mode,

one can unify these two different descriptions and provide a
complete expression of the nearly linear relation. Without
external pumping, eq 10 reduces to ω0 = ω̃n, meaning that the
electric field decays at the same loss rate l = − Im[ω̃n] of QNM
Ẽn(x). Operating in the single-mode lasing regime means that
the complex frequency change given by eq 10 has to
completely cancel the intrinsic loss rate l = − Im[ω̃n], leading
to a real lasing frequency ω0. As a result, by inserting eq 11 into
eq 10, one can obtain a closed-form expression of the relation
between laser intensity, frequency, and pumping strength,

E E a D( ) 1 ( ) ( )n n n n
2

0
2

0
2

0
2

0 max| [ + | | ] =
(12)

As pumping strength Dmax increases, the change in laser
frequency is typically negligible so that eq 12 predicts a linear
dependence between pumping strength Dmax and the laser
intensity, which is proportional to |an|2. Therefore, the QNM
expansion combined with the Pade ́ approximant establishes the
connection between the static saturable gain and local spatial
hole burning. It is important to emphasize that the Pade ́
approximant is not merely a mathematical approximation, it is
also rooted in the physics of saturable gain. The typical
phenomenological description of saturable gain g = g0/(1 + I/
Isat) does not include the spatial dependence, implicitly
assuming a uniform distribution of both the laser medium
and field intensity. Moreover, such a description of saturable
gain can successfully model many laser behaviors even though,
in practice, both the pumping strength and the field intensity
can be nonuniform within the laser cavity. Here, this conflict of
nonuniformity is resolved by the high accuracy of Pade ́
approximant, ensuring the effectiveness of such traditional
saturable gain descriptions with the inherent spatially nonuni-
form laser nonlinearity.
It is worth noting that similar linear-dependence has been

found via the so-called single-pole approximation of SALT
(SPA-SALT),28 where a different basis function is used and the
lasing frequency is assumed to be fixed. However, tracing the
frequency change can be critical when a system is operating
near an EP, which justifies the significance of the QNM
expansion analysis here.

4. DYNAMIC GAIN AND FREQUENCY COMB
GENERATION IN NEAR-EP LASERS UNDER
QNM-PALT

Typically, adding pump power to a single-mode laser will result
in a second cavity resonance reaching its lasing threshold by
taking advantage of the undepleted gain at the locations in the
cavity where the first mode does not have much intensity. In
this process the population inversion can remain static and
yields stable two-mode lasing.28 However, if the system is
operating close to an EP, a second frequency component can,
and generally will, be populated with long-lived excitations due
to spontaneous emission even when the second cavity
resonance is below its lasing threshold.24 The nonlinear
coupling between these two close-but-different frequencies can
destabilize the stationary gain and initiate a synchronized
oscillation between the population inversion and electric field.
The frequency difference determines the oscillation frequency
of population inversion, which then acts as a time-modulation
to the fields within the gain medium. Thus, additional
frequencies emerge through this self-time-modulation process
and form a frequency comb with periodic population inversion.
Such laser dynamics have been numerically demonstrated
using PALT, a frequency domain analysis of the MB
equations.24 Nevertheless, PALT also poses great challenges
on both intuitive interpretation and numerical computation of
dynamic gain due to the combination of nonlinear couplings
across different time scales and spatial complexity. Previously,
the only feasible numerical approach for PALT relied on the
fact that the response of 1D systems can be analytically
described via a Green’s function,24 which requires strict initial
guesses and long computation times. Here, we show that
PALT can be further simplified via QNM expansion using a
Pade ́ approximant to handle these difficulties, yielding an
efficient algorithm even when applied to multidimensional
systems.
Starting from the PALT analysis, the EP-laser dynamics in

1D system can be described by24
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where ωm = ω0 + mωd is the frequency of the mth Fourier
component Em (x) e−iωmt. All of these Fourier components are
coupled together through the dynamic population inversion D
(x, t = ∑nDn (x) e−inωdt) determined by eq 14, where D̅ (x) and
δ̅ are column vectors with components (D̅ (x))m = Dm (x) and
(δ̅m = δm,0); again, δm,0 is the Kronecker delta. E x( ) is a matrix
formed from the electric fields of each different Fourier
component E x E x( ( )) ( )mn m n= . and ± are diagonal

m a t r i c e s w i t h m i( ) /( )mn m n d= + a n d

( ) ( )mn m n m=± ± , representing the dispersive response
of the two-level atoms. γ∥ is the relaxation rate of population
and I is the identity matrix. Equation 14 describes how a static
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pump Dp (x) is saturated and modulated locally by the electric
field E (x) = ∑mEm (x) e−iωmt, and then the induced
polarization density serves as an excitation source to support
the stable generation of frequency comb through eq 13.
For illustrative purposes, we consider a parity-time-

symmetric-like configuration as shown in Figure 3a, where
the pumped cavity is coupled to the passive cavity with linear
material loss. The real part of refractive indexes of the pumped
and lossy cavities are n1 = 3.4 and n2 = 3.67. The system is
normalized by the length of pumped cavity L1 = 2.05 μm, and
the length of the lossy cavity is L2 = 1.2L1. Two DBRs are used
at both ends of the structure to control the radiation loss, and
its corresponding refractive indexes and lengths are [n = 3.0, L
= 0.04 L1] and [n = 1.5, L = 0.06 L1]. The DBR in the middle
regulates the coupling between the two cavity modes, and its
refractive indexes and lengths are [n = 3.0, L = 0.04 L1] and [n
= 1.5, L = 0.05 L1]. The active cavity Cact on the left is
immersed in a tapered static pump DP (x) and the passive
cavity Cpas on the right has linear absorption in terms of a
complex permittivity εr (x) = n22 + iσ/ω, where σ is the passive
conductivity that yields absorption. The pump provides
dispersive gain to signals at different frequencies, and the
corresponding modulus of normalized gain curve

( )
iab

= + is shown in Figure 3b. Such a coupled-

cavity structure has its QNM frequencies located below the
real axis as shown in Figure 3c. The two QNMs around the
center of the gain curve receive most gain compared with other
QNMs and constitute the EP pair we will focus on through this
section. The field profiles of the EP pair are depicted across the
coupled-cavity system in Figure 3d,e, which show similar field
profiles within each cavity and a cross-cavity tunneling due to
the weak spatial coupling suppressed by the DBR in the
middle.
Solving the spatial-temporally coupled nonlinear wave

equations, eqs 13−14 reveal the frequency comb formation
in this near-EP system. Its exact solution is plotted in Figure 4c
as a function of Dmax, with each line representing the intensity |
Em (x0)|2 of a comb tooth at the left end of the active cavity
Cact, x0 = 0. The EP comb spectrum at pumping strength of
Dmax = 0.2 is plotted in Figure 4e. Only the central two comb
teeth with highest intensity can be continuously connected to
the two original passive QNMs, while the rest come from wave
mixing induced by the dynamic population inversion.
However, since the temporal coupling terms in eqs 13−14
include nonlinear matrix inverse which should be evaluated at
every spatial pixel, under standard PALT one has to solve a
nonlinear dense matrix problem with a massive number of
discretized field amplitudes as unknowns. Although the
simplicity of a 1D structure allows a semianalytical Green’s

Figure 3. (a) The refractive index profile of the coupled gain-loss resonator. The green area stands for the pump profile and the red area represents
the passive conductivity σ. The pump profile is tapered to a Hann window function Win (x) = 1 − cos (2πx/L1) within the active cavity and the
gain parameters are γ⊥ = 0.1 c/L1 and γ∥ = 0.002 c/L1. The conductivity σ is tuned when increasing pumping strength to ensure the laser operates
near EP. (b) Absolute value of the normalized gain curve Γ⊥(ω). (c) Distribution of QNM frequencies on the complex frequency plane. The two
modes around the center of gain curve have biggest excitation amplitude thus are colored red. (d, e) The real and imaginary part of the QNM field
profile Ea,b across the resonator. These two modes share similar profile inside the two cavities with a constant phase different.
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function approach for numerical computation,24 it is generally
impractical to implement in more complicated structures in 2D
and 3D.
Instead, under the QNM expansion framework, the spatial

dependence of PALT equations can be included in the QNM
basis, leaving only a few temporally coupled amplitudes as
unknowns. Moreover, as the pump-induced polarization in eq
13 is bounded by the bandwidth of the gain curve shown in
Figure 3b, the two near-resonance QNM excitations marked as
red dots in Figure 3c dominate the passive cavity response. As
the pumping strength Dmax gradually increases from 0, these
two complex QNM frequencies can continuously connect to
the two central frequencies of the comb spectrum (see in
Supporting Information Figure S1), and the frequency-mixing
of which generates polarizations at equally spaced frequencies
around the original two. Those polarizations then act as
additional source to excite electric field on the other comb
lines, which could be readily modeled by the QNM expansion
approach. Additionally, we notice that these two QNMs shown
in Figure 3d,e have almost the same field spatial profile Eα (x)
inside the pumped cavity Ẽa,b (x) = α1,2Eα (x), guaranteed by
the weak spatial coupling limit in such EP-laser.24 By
projecting the electric field onto the near-resonance 2-QNM
basis as Em (x) = amẼa (x) + bmẼb (x) and adopting the same
profile approximation, eq 13 can be simplified as a set of
nonlinear matrix integral equations with the QNM amplitudes
{am, bm} and frequencies {ω0, ωd} as unknowns (see detailed
derivation in Supporting Information S4),

a E E D M a b( ) ( )a m m a a m
k

m k k k
2 2 2

max 1 1 2| = +

(15)

b E E D M a b( ) ( )b m m b b m
k

m k k k
2 2 2

max 2 1 2| = +

(16)

where Mm−k is the coupling coefficient between signals with
frequency ωm and ωk induced by the (m−k)th component
Dm−k of dynamic population inversion. Inserting the QNM
expansion into eq 14, one can determine Mm−k by Mm−k =
(M̅)m−k, where M̅ is a column vector,

M F I( )eff= (17)

Here, F I( )eff is a matrix generalization of the scalar function F
(y) defined as F I F I( ) ( )eff mn eff mn[ ] = [ ]. δ̅ is a column vector
with components (δ̅)m = δm,0. Ieff is an effective intensity matrix
defined as

I a b a b

a b a b

1
2

( ) ( )

( ) ( )

eff 1 2 1 2

1 2 1 2

= [ + * + *

* + * + ]

† † †

† †
+ (18)

where a a( ) m nmn = and b b( ) m nmn = are two amplitude
matrices.
Equations 15−18 are the basic QNM-PALT integral

equations of the QNM amplitudes {am, bm} and frequencies
{ω0, ωd}. However, elements of Ieff are generally complex and
might fall outside the valid domain of Pade ́ approximant,

Figure 4. Comparison of computation results from exact Green’s function brute-force integration and QNM-PALT. (a) Absolute value of the
original integral function F(y) and the fitted function with real variable y. (b) Percentage error of the Pade ́ approximant compared with the exact
value. (c, d) Lasing intensities at frequency ωm = ω0 + mωd as a function of pumping strength Dmax. The level of absorption σ is tuned with the
pump to ensure near-EP operation (see in Supporting Information S3). (e, f) The comb spectrum at pumping strength of Dmax = 0.2 are marked as
red pentagrams. The solid black line represents the spectrum calculated from a direct FDTD simulation. (c, e) are the exact result from Green’s
function and (d, f) are from QNM-PALT under Pade ́ approximant.
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which means Pade ́ approximant cannot be adopted directly to
simplify the integral calculation. Noting that Ieff only depends
on the QNM amplitudes and has no spatial dependence, its
eigenvalues and eigenvectors should also be independent of
space. Therefore, its matrix of eigenvectors can be taken out of
the integral thus significantly reducing the number of
evaluations of F (y) via

M F I F P P P F P( ) ( ) ( )eff
1 1= = = (19)

where P and are defined by the diagonalization of
I P Peff

1= . One only needs to evaluate F (y) at the
diagonal elements since is the diagonal eigenvalue matrix.
Moreover, as evidenced in Supporting Information S5, all the
eigenvalues in reside within the valid domain of Pade ́
approximant, so all the integrals can be further simplified by
Pade ́ approximant accurately. As a result, the QNM-PALT
equations (eqs 15−18) reduce to purely algebraic nonlinear
equations without any spatial dependence or integration.
As illustrated in Figure 4a,b, this Pade ́ approximant provides

a rather accurate estimation of F(y) for real y and can be
analytically continued to a finite area on the complex y plane (a
more detailed discussion about the analytic continuation and
its accuracy is provided in Supporting Information S5). Solving
these nonlinearly coupled algebraic QNM-PALT equations
yields numerical results shown in Figure 4d,f. The correspond-
ing comb spectrum is quantitatively reproduced by our QNM-
PALT formalism, as also evidenced by the agreement with a
direct FDTD simulation. The residual quantitative error comes
from the neglect of other QNMs’ excitations and the use of
Pade ́ approximant.
The original PALT equations (eqs 13−14) define a matrix

problem sparsely coupled in space but densely coupled in
frequency. Direct solution approaches such as finite-difference

frequency domain (FDFD) are impractical due to the small
discretization size required and high density of this matrix
problem.29 Even though FDTD simulation could produce
satisfactory results in simple 1D systems,24 the small
discretization length and long relaxation time make the
numerical simulation extremely inefficient and impossible to
scale up to more realistic 2D or 3D structures. As an example,
the FDTD results shown in Figure 4e,f require an extremely
high resolution of at least 1000 pixels per in-medium
wavelength to converge, leading to an FDTD simulation of
around 20000 pixels and 8000000 time steps. Such an FDTD
simulation of the MB equations in 1D system takes around 10
h on standard hardware, and the simulation time scales
quadratically with the resolution of pixels. (A more detailed
discussion of the FDTD efficiency can be found in Supporting
Information S6). Although a Green’s function can analytically
describe spatial dependence in Maxwell equation for 1D
systems, the spatially nonuniform population inversion still
requires fine spatial discretization and restricts the Green’s
function approach to simple 1D structures.24 Typical iterative
Green’s function solvers require a strict initial guess and take
around 10 min (with the same hardware setup) to obtain the
result shown in Figure 4e.24 Instead, the QNM-PALT we
develop here completely eliminates the space dependence in
PALT and provides an accurate description of the coupling
strength among different frequencies. The issue of discretizing
nonuniform population inversion is circumvented by recon-
struction from the QNM expansion coefficients and the field
profile of QNM, so spatial discretization on population
inversion is no longer needed in QNM-PALT. As a result,
QNM-PALT only takes a few seconds to obtain the result
shown in Figure 4f with a random initial guess. Furthermore,
the QNM-PALT formalism does not depend on the physical
dimension of the system and can therefore be directly

Figure 5. (a) Real part of the refractive index of two coupled disk resonator tuned near an EP. The two disks have different radius r2 = 1.25r1 and
complex refractive index of n1 = 3.4 + 0.005i and n2 = 3.67 + 0.005i. The distance between two disks is d = 0.3r1. An additional nanotip absorber
was placed at a distance of da = 0.15r1 from the right disk along the central axis. The nanotip absorber has a radius of ra = 0.1r1 and a highly lossy
refractive index of na = 3.5761 + 0.2525i. (b) A Gaussian shaped pumping D = Dmax × (2πσ2)−1exp[−r2/(2σ2)], with σ = 0.5r1, is applied to the left
disk to provide gain to this system. The Gaussian distribution is truncated outside the boundary of the disk and the corresponding gain parameters
are ωab = 2.897c/r1, γ⊥ = 0.02c/r1, and γ∥ = 0.004c/r1. (c, d) The real part of the field distribution of the two low loss QNMs involved in the lasing
action. (e) The comb solution at the pumping strength Dmax = 0.8.
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generalized to 2D and 3D structures�one just need to replace
the 1D QNM inner product eq 8 with the form of the practical
dimension.39

5. 2D DEMONSTRATION OF EP COMB GENERATION
IN COUPLED-DISK RESONATORS

In this section, we apply the QNM-PALT framework to a more
realistic 2D coupled-disk structure, where the whispering-
gallery modes (WGMs) supported have been shown to be
ideal candidates for EP-related lasing applications.17,18,20

Here we consider the TM modes in a near-EP laser system
consists of two microdisk resonators as illustrated in Figure 5a.
Each of the two microdisk resonators naturally supports two
degenerate WGMs because of circular symmetry. For such
coupled-disk system, the two pairs of degenerate WGMs
coupled together, giving rise to 4 nearly degenerate
supermodes with different mirror symmetries. In order to
manifest a 2-mode EP, a small nanotip with large absorption is
introduced along the central axis, effectively suppressing 2
supermodes far below threshold while keep the low loss of
other 2 supermodes. The real part of the field distribution of
these two high Q supermodes are plotted in Figure 5c,d. A
tapered pumping is applied only to the left microdisk as shown
in Figure 5b to create the gain-loss contrast crucial to EP
formation. In this 2D system, one can use the QNM-PALT
framework to find a EP comb solution at the pumping strength
of Dmax = 0.8 shown in Figure 5e. Here, the 1D QNM-PALT
equation (eqs 15−16) should be reformulated for general 2D/
3D systems as

a D M a b( ) ( )a m m m
k

m k k kmax 1 1 2= +
(20)

b D M a b( ) ( )b m m m
k

m k k kmax 2 1 2= +
(21)

where the QNMs are already normalized and the scalar
function F(y) in the coupling coefficient matrix M̅ should be
replaced with corresponding 2D surface (3D volume) integral,
which is estimated by its Pade ́ approximant. The complete
trajectory of the two EP modes from passive QNMs to the
ultimate comb solution is included in Supporting Information
S7.
A 2D MB FDTD simulation would require over 2.5 × 106

discretization pixels and 1200 h to obtain an EP comb solution
in system shown in Figure 5 (estimated using the same
convergence criteria s in 1D). In contrast, our QNM-PALT
framework generates the result in Figure 5e within seconds.
The high-resolution discretization is only needed in the linear
problem of solving QNMs, which takes just minutes with
existing efficient algorithms.70,71 This dramatic speed-up arises
because QNM-PALT completely eliminates spatial depend-
ence, making it scalable to arbitrary dimensions.

6. DISCUSSION
The dynamic distribution of population inversion in near-EP
lasers has been fully described by the PALT theory,24 which
predicts the self-generation of a frequency comb near an EP.
However, it is still challenging to numerically model the
coupling between local laser nonlinearity and resonant modal
interaction of EP, especially in 2D and 3D. The QNM-PALT
framework we developed here provides a systematic approach
to bridge these two processes at different time scales. Unlike
traditional phenomenological TCMT, which is constructed

empirically and might require numerical experiments to fit key
parameters such as coupling coefficients and decaying
rates,22,72,73 QNM-PALT utilizes the rigorously defined
QNMs as the basis functions to reconstruct the response of
the passive structure to an external laser pump. All key
parameters in QNM-PALT have closed-form expressions and
can be computed with passive QNM solutions.39 Compared
with existing hybrid laser models combining TCMT and
carrier rate equations,25,31−37 QNM-PALT handles full spatial-
temporal dependence in population inversion distribution and
minimizes the computational burden. Altogether, by inheriting
both the conciseness of TCMT and the rigor of ab initio MB
equations, QNM-PALT provides a minimal model to describe
the dynamic gain in EP-lasers, in which many interesting EP
behaviors realized on other nonlinear platforms can hopefully
be revisited in the context of laser nonlinearity.44−46,74−77

Moreover, the spatial degree of freedom in laser design can
also be efficiently investigated using our approach.67

Under reasonable approximations, the challenging numerical
computation of PALT can be further simplified to the set of
algebraic equations comprising QNM-PALT and can be solved
with minimal effort using ordinary nonlinear system solvers. In
particular, the Pade ́ approximant of the expansion integral
function provides an accurate numerical approach to eliminate
the spatial dependence in both EP-lasers and typical single-
mode lasers. Compared with a regular Taylor series
expansion,63 such a rational function expansion is more
consistent with the characteristics of gain saturation and is
expected to simplify the spatial dependence in more
complicated multimode lasers.37 The computational simplicity
QNM-PALT promises makes it possible for generalizing such
EP-lasers to 2D and 3D structures commonly used in on-chip
devices, where more degrees of freedom are available for fine-
tuning toward EP.13,14,17−20 Moreover, our approach also
enables optimization of the laser cavity to produce high-quality
coherent frequency combs with a compact device volume.

7. METHODS
The full range of laser behaviors, including typical single-mode
lasing and frequency comb generation in near-EP lasers, is
reconstructed using a quasinormal mode expansion (see in
Supporting Information S1−S4). The computational chal-
lenges arising from the nonuniform distribution of population
inversion are addressed by employing a rational function
expansion, known as the Pade ́ approximant, as discussed in
Supporting Information S5.
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