
Supplementary Information for Bi-stability and Period-doubling Cascade of
Frequency Combs in Exceptional-point lasers

1. DERIVATION OF STABILITY EQUATIONS

Here, we derive the equation governing comb stability, as presented in Eq. (14) of the main text, by solving the
perturbation equations, Eqs. (4)–(6). In the process, we provide explicit expressions for the entries of the coefficient
matrices, X(r, ωF,k) and Ω(ωF,k). To ensure the generality of the method, the derivation is conducted in three
dimensions (3D), after which the result is simplified to obtain Eq. (14) for one dimensional systems.

The 3D Maxwell–Bloch(MB) equations for electrical field E(r, t), polarization P(r, t) and population inversion
D(r, t) are
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θ̂ is the unit vector of the atomic dipole momentum, with θ̂ · θ̂∗ = 1. The rest of the notation is consistent with Eq.
(1)–(3) in the main text. Similar to Eqs. (4)–(6), the 3D perturbation equations can be derived as:

∂

∂t
d = −γ∥d−

iγ∥

2
({E∗

s · p+Ps · ϵ∗} − c.c.), (S4)

∂

∂t
p = −(iωba + γ⊥)p− iγ⊥[(Dsϵ+Esd) · θ̂]θ̂∗, (S5)

−∇×∇× ϵ− 1

c2

(
εc

∂2

∂t2
+

σ

ε0

∂

∂t

)
ϵ =

1

c2
∂2

∂t2
p, (S6)

where Es, Ps and Ds solves the Maxwell–Bloch(MB) equations (1)–(3) in the main text. We consider a known
limit-cycle solution,

Es(r, t) = e−iω0tEenv(r, t) = e−iω0t
+∞∑
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Em(r)e−imωdt, (S7)
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where the Fourier components, {Em, Pm, Dm}, repetition rates, ωd and spectral center ω0 have been determined
by “periodic-inversion ab initio laser theory”(PALT).1 In this situation, Eq. (S4)–(S6) describes a Floquet system
under periodic modulation. Therefore, the solutions of [d, p, ϵ] should be enveloped by Floquet states. Noting the
complex–conjugate operation (c.c.) in Eq. (S4), we consider the trial solution as
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∑
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ϵa,b, pa,b and dak have the same temporal period of 2π/ωd. The form of Eq.(S12) ensures that d is real, while ϵ∗bk or
p∗bk cannot be assumed as the complex conjugate of ϵak or pak, meaning ϵbk ̸= ϵak and pbk ̸= pak in general. Now, the
target is to determine these periodic envelopes as well as their complex Floquet frequencies ωF,k. First, we substitute
Eq.(S7)–(S8) and Eq.(S10)–(S12) into Eq.(S4) then extract the terms of e−iωF,kt for each k. To simplify the notation,
we now omit the index k, as the following derivation applies to all Floquet modes, including the one with the primary
Floquet frequency ωF.
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where Eenv = Eenv · θ̂, ϵb = ϵb · θ̂∗ and ϵa = (ϵa · θ̂). The eiωFt component is simply the complex conjugate of Eq. (S13).
Then, we substitute Eq.(S7), (S9) and (S10)–(S12) into Eq.(S5), then separate the term of e−i(ω0−ω∗

F)t from that of
e−i(ω0+ωF)t. The term of e−i(ω0+ωF)t yields
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The complex conjugate of e−i(ω0−ω∗
F)t term yields
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where we have applied the fact that population inversion is real, D∗
s = Ds. Similarly, we substitute Eq. (S10)–(S11)

into the wave equation Eq. (S6), which yields
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Before proceeding with Eq. (S13)–(S17), we introduce the following notation related to Fourier series. For any
periodic function f(t), let fm be it’s m-th Fourier component. We define f̄ as a column vector containing all fm,

thus [f̄ ]m = fm for m ∈ Z. Additionally, we define ¯̄f as a matrix, where the [m,n] entry is given by [ ¯̄f ]mn = fm−n

for m,n ∈ Z. In such notation, the multiplication between two functions f(t) and g(t) with the same period can be

interpreted as the convolution of their Fourier coefficients, i.e., fg = ¯̄fḡ = ¯̄gf̄ and f∗g = ¯̄f†ḡ, where † is the operation
of complex-conjugate transpose.

Using the above notation, we expand Eq. (S13)–(S15) in Fourier series,
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where [ ¯̄Es]mn = Em−n · θ̂ and [ ¯̄Ps]mn = Pm−n. Γ∥, Γa and Γb are diagonal matrices,

[Γ∥]mn = γ∥[mωd + ωF + iγ∥]
−1δmn, (S21)

[Γa]mn = γ⊥[ω0 +mωd + ωF − ωba + iγ⊥]
−1δmn, (S22)

[Γb]mn = γ⊥[ω0 −mωd − ωF − ωba − iγ⊥]
−1δmn, (S23)

and δmn is Kronecker delta function, δmn = 1 for m = n, while δmn = 0 for m ̸= n. We substitute Eq. (S19)–(S20)
into Eq. (S18) to cancel p̄a and p̄b,
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Eq. (S24) yields d̄a as a function of ϵ̄a and ϵ̄b,
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We substitute Eq. (S25) into Eq. (S19) and Eq. (S20) to derive p̄a,b as functions of ϵ̄a,b,

p̄a = Γa[(
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Eq. (S28)–(S29) imply that the wave equations Eq. (S16) and Eq. (S17) are coupled through the source terms,
pa(ϵa, ϵb) and pb(ϵa, ϵb) on the right-hand side. We now expand Eq. (S16) and Eq. (S17) in Fourier series,
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where ωa,b are diagonal matrices: [ωa]mn = (ω0 + mωd + ωF)δmn and [ωb]mn = (ω0 − mωd − ωF)δmn. The spatial
derivative operator (−∇×∇×) acts element-wisely on each Fourier component of ϵa,b. To combine Eq. (S28)–(S31)
into a group of linear equations, we must take the complex conjugate of Eq. (S31), which also flips the boundary
conditions. In doing so, we derive the stability equations for the limit cycle,
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In one-dimensional system where ∂y = ∂z = 0 and θ̂ = θẑ, the perturbation of the electrical field can be simplified as
ϵ̄a = ϵ̄aθ

∗ẑ and ϵ̄b = ϵ̄bθẑ. Thus, Eq. (S32) reduces to Eq. (14) in the main text,
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where we have added back the index k.

2. PASSIVE PARAMETERS OF THE EP LASER

Supplementary Fig.1 shows the passive refractive index of the EP laser cavity in the main text. The spectra in
Fig.3 and the phase portraits in Fig.4 of the main text are recorded inside the gain cavity at x0 = 0.47L.
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Supplementary Fig. 1. The spatial profile of the refractive index in the EP laser.

3. SIMULATION RESULTS FOR MORE PERIOD DOUBLINGS ABOVE C4

In Supplementary Fig. 2, we present FDTD simulations of the lasing spectra for Dmax > 6.0, where solving PALT
becomes impractical due to the large number of comb lines. The spectra exhibit a transition from a discrete comb
structure to a continuous spectrum around Dmax = 7.36. This transition may result from either an infinite cascade
of period doublings or a random crossing of the real axis by a Floquet frequency ωF.
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Supplementary Fig. 2. Simulation results above C4. Two more period doublings are observed at Dmax = 7.20 (first row)
and Dmax = 7.32 (second row). At Dmax = 7.36 (third row), the lines are too close to be resolved. This is near the threshold
between combs and continuous spectra. At Dmax = 8.0, the spectrum is continuous, as these results are converged for long
simulation times.
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