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Abstract: Recent studies have demonstrated that a laser

can self-generate frequency combs when tuned near an

exceptional point (EP), where two cavity modes coalesce.

These EP combs induce periodic modulation of the pop-

ulation inversion in the gain medium, and their repeti-

tion rate is independent of the laser cavity’s free spectral

range. In this work, we perform a stability analysis that

reveals two notable properties of EP combs, bi-stability and

a period-doubling cascade. The period-doubling cascade

enables halving of the repetition rate while maintaining the

comb’s total bandwidth, presenting opportunities for the

design of highly compact frequency comb generators.
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1 Introduction

A frequency comb is an optical phenomenon where a

system produces a series of equally-spaced spectral lines.

Optical frequency combs (OFCs) are essential to optical-

frequency synthesizers [1] and precision metrology [2]–[4].

In the past decade, OFCs have also been applied in optical

communications [5] and quantum computation [6]. Conven-

tionally, OFCs are generated by mode locked lasers [7], opti-

cal cavities with nonlinearity [8]–[10], and quantum cas-

cade lasers [11]–[13]. However, these traditional comb gen-

eration methods all require the repetition rate to match the

free spectral range (FSR) of the laser cavity. Consequently,
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large cavity sizes are required to generate radio-frequency

OFCs.

Recently, it was discovered that exceptional point (EP)

optical cavities can develop into frequency combs with rep-

etition rates independent of the cavity’s FSR [14]–[16]. EPs

are points of degeneracy in the phase space where two

or more eigenmodes become identical [17]–[21]. When two

cavity modes are sufficiently close to an EP, there exists a

gain threshold above which any perturbation to the system

induces a long-lived periodic modulation to the carrier pop-

ulations in the gain medium. These dynamic populations

subsequently modulate any active lasing modes in the sys-

tem, generating equally spaced comb lines in the output

spectrum. As such, an EP comb is self-generated without

any external modulation, and its repetition rate 𝜔d, equal

to the self-modulation rate of the inversion, can be signif-

icantly smaller than the cavity’s free spectral range as it

is approximately set by the frequency spacing of the EP

modes. In principal, arbitrarily small repetition rates can be

achieved as the laser system is tuned sufficiently close to the

EP. However, in practice, it is technically difficult to reach

an exact EP in experiments. Moreover, the robustness of the

comb will be compromised due to the enhanced sensitivity

near EP [16], [21], [22]. Therefore, the minimum achievable

repetition rate in EP combs is thought to be limited.

In this work, we show that one can significantly reduce

the repetition rate of EP combs without pushing the system

closer to the EP, thus realizing robust radio-frequency OFCs

in small laser cavities. Specifically, we demonstrate that an

EP comb can halve its repetition ratemultiple times through

a period-doubling cascade, which was typically observed

in more complicated laser systems with light injection or

an external modulation [23], [24]. In particular, we carry

out a stability analysis with the perturbation method on

the Maxwell-Bloch equations [25], [26]. Driven by the peri-

odic population inversion, an EP laser becomes a Floquet

system [27], where any infinitesimal perturbation can be

decomposed into Floquet eigenmodes, with each having a

complex Floquet frequency. A Floquet frequencywith a pos-

itive (negative) imaginary part leads to the corresponding

Floquet mode growing (decaying) over time. The stability of

an EP comb is thus determined by the sign of Im(𝜔F), with
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𝜔F being the Floquet frequency with the largest imaginary

part. Given an existing EP comb with a line spacing of 𝜔d,

by solving for 𝜔F, we find a series of pumping thresholds

at which a Floquet mode turns on, with Im(𝜔F) = 0 and

Re(𝜔F) = 0.5𝜔d. Through gain saturation, this Floquetmode

induces an additional modulation to the population inver-

sion, which has twice the period of the inversion fluctua-

tion from the original EP comb. The re-modulated inver-

sion then doubles the period of the lasing field’s envelope,

hence inserting extra lines into the original EP comb. The

period doubling occurs through each of these thresholds

cascade, eventually leading to arbitrarily small repetition

rate. With the perturbation method, we also find a bistabil-

ity zone in EP lasers, where two different EP combs exist at

the same pumping strength. Thus, the laser state depends

on initialization, which is potentially applicable in optical

signal-processing devices and all-optical computer systems

[28].

2 Stability analysis on frequency

combs

Period doubling is a special transition from one frequency

comb to another. For the transition to occur, the former

comb must first become unstable. To predict the stability

of a comb, we apply the first-order perturbation method to

the fundamental equations governing lasing materials. We

begin by deriving generalized perturbation equations for

arbitrary lasing states. Then, we extend the analysis to limit-

cycle lasing states, proving that the stability of a frequency

comb is associated with a complex Floquet frequency 𝜔F,

which can be determined by solving a linear eigenmode

equation.

Lasers can be described rigorously by the Maxwell–

Bloch (MB) equations [16], [25], [26], a semi-classical model

depicting the relations among the population inversion

D(r, t) of gain media, the electric field E(r, t) and the polar-

ization density P(r, t). To simplify the notation, we focus on

a one-dimensional (1D) laser cavity with E(r, t) = E(x, t)ẑ,

P(r, t) = P(x, t)ẑ and D(r, t) = D(x, t) (Our method can be

readily extended to three-dimensional systems, as shown

in Supplementary section I). In particular, theMB equations

are

𝜕

𝜕t
D = −𝛾‖(D− Dp )−

i𝛾‖
2
(E∗P − EP

∗ ), (1)

𝜕
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D, E, and P here have been normalized by R
2∕(𝜀0ℏ𝛾⊥),

2R∕(ℏ√𝛾⊥𝛾‖ ), and 2R∕(𝜀0ℏ
√
𝛾⊥𝛾‖ ), respectively, with R

being the amplitude of the atomic dipole moment, 𝜀0 the

vacuum permittivity, ℏ the Planck constant, 𝛾‖ the popula-
tion relaxation rate and 𝛾⊥ the dephasing rate of the gain-

induced polarization (i.e., the bandwidth of the gain). Dp(r)

is the normalized net pumping strength and profile, 𝜔ba is

the frequency gap between the two atomic levels, 𝜀c(x) is

the relative permittivity profile of the cold cavity, 𝜎(x) is a

conductivity profile that produces linear absorption, and c

is the vacuum speed of light.

Consider a fixed-point or limit-cycle solution to the MB

equations (1)–(3), D = Ds(x, t), E = Es(x, t) and P = Ps(x, t).

To determine the stability of the solution, we add a

small perturbation, such that D = D(x, t)s +Δd(x, t), E =
Es(x, t)+Δ𝜖(x, t), and P = Ps(x, t)+Δp(x, t), where Δ is

a real infinitesimal number. The perturbation equations

are derived by substituting the perturbed D, P and E

into Eqs. (1)–(3) and then extracting the linear terms

ofΔ,

𝜕

𝜕t
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E
∗
s
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, (4)
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p = −(i𝜔ba + 𝛾⊥ )p− i𝛾⊥(Ds𝜖 + Esd), (5)
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Notably, for smallDp, the laser is off, hence Es = 0, Ps =
0 andDs = Dp. At such a trivial state, equations (4)–(6) yield

linear-cavity wave equations [29],

𝜕2𝜖m
𝜕x2

+ �̃�2
m

c2

(
𝜀c +

i𝜎

𝜀0�̃�m

+ Γ⊥(�̃�m )Dp

)
𝜖m = 0, (7)

where Γ⊥(𝜔) = 𝛾⊥
𝜔−𝜔ba+i𝛾⊥

. Equation (7) determines the lin-

ear cavity’s resonant modes 𝜖m and the related resonant

frequencies �̃�m. An EP is approached when two resonant

modes merge.

Above the first lasing threshold, a single mode turns

on. The solution is a non-trivial fixed point, Es = E0(x)e
−i𝜔0t,

Ps = P0(x)e
−i𝜔0t and Ds = D0(x). Fixed-point stability anal-

ysis has been applied to the study of the sensitivity and

signal-to-noise ratio of nonlinear EP sensors [30]. Under

the stationary-inversion approximation (SIA), Eqs. (4)–(6)

yield active-cavity modes and determine the second lasing

threshold [29].

Beyond the SIA, Eqs. (4)–(6) determine the comb

threshold at which single-mode lasing becomes unstable

and the system transitions to a limit cycle [16],

Es(x, t) = e−i𝜔0t

+∞∑
m=−∞

Em(x)e
−im𝜔dt, (8)
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Ps(x, t) = e−i𝜔0t

+∞∑
m=−∞

Pm(x)e
−im𝜔dt, (9)

Ds(x, t) =
+∞∑

m=−∞
Dm(x)e

−im𝜔dt, (10)

where the repetition rate 𝜔d, spectral center 𝜔0 and

the Fourier components {Dm, Em, Pm} can all be deter-

mined by “periodic-inversion ab initio laser theory” (PALT)

[16]. Eqs. (8)–(10) act as a periodic temporal modulation

in Eqs. (4)–(6). By Floquet theory [27], the solution to

Eqs. (4)–(6) should include Floquet modes, fk(x, t)e
−i𝜔F,kt,

where fk(x, t) has a period of 2𝜋∕𝜔d. Due to the difference-

frequency generation terms involving 𝜖∗ and p∗ in Eq. (4),

each harmonic oscillation e−i𝜔F,kt generates a complex-

conjugate term e
i𝜔∗

F,k
t
. Hence, we postulate the following

form of solutions,

𝜖(x, t) = e−i𝜔0t
∑
k

[
𝜖ake

−i𝜔F,kt + 𝜖∗
bk
e
i𝜔∗

F,k
t
]
, (11)

p(x, t) = e−i𝜔0t
∑
k

[
pake

−i𝜔F,kt + p
∗
bk
e
i𝜔∗

F,k
t
]
, (12)

d(x, t) =
∑
k

dake
−i𝜔F,kt + d

∗
ak
e
i𝜔∗

F,k
t
. (13)

Here, fak,bk with f = 𝜖, p, d are functions of x and t, with

a time period of 2𝜋∕𝜔d, fak,bk = fak,bk(x, t) = fak,bk(x, t +
2𝜋∕𝜔d). To determine 𝜔F and the space-time profile of

𝜖a,b(x, t), we substitute Eqs. (8)–(10) and Eqs. (11)–(13) into

Eqs. (4)–(6). By expanding the periodic functions in Fourier

series, we derive the following wave equations,

d2

dx2

[
𝜖ak

𝜖bk

]
+𝛀(𝜔F,k )

[
𝜖ak

𝜖bk

]
= X(x, 𝜔F,k )

[
𝜖ak

𝜖bk

]
, (14)

in which 𝜖ak,bk(x) is a column vector that includes the

Fourier components of 𝜖ak,bk(x, t). 𝛀(𝜔F,k) and X(𝜔F,k) are

matrices determined by the limit cycle, {Es, Ps,Ds}. (d2∕dx2)
acts element-wise on the column vector.

(
d2𝜖ak∕dx2

)
isssss

associated with outgoing boundaries while
(
d2𝜖bk∕dx2

)
is

associated with incoming boundaries. The derivation of

Eq. (14) and the expressions for 𝛀(𝜔F,k) and X(x, 𝜔F,k) are

provided in the supplementary section I.

Floquet modes can be solved from Eq. (14). Their Flo-

quet frequencies 𝜔F,k are determined such that the eigen-

vectors 𝜖ak,bk(x) are non-trivial. For each 𝜔F,k , the expres-

sions of Eq. (11)–(13) suggest that 𝜔F,k′ ≡ −𝜔∗
F,k

and 𝜔F,k
′′

≡ 𝜔F,k + m𝜔d with m ∈ ℤ are degenerate solutions to the

same Floquet mode. Therefore, all the Floquet frequencies

can be mapped into the “Floquet zone”, defined by Re(𝜔) ∈
[0, 0.5𝜔d] on the complex plane. In the Floquet zone, we

define the primary Floquet frequency 𝜔F as the 𝜔F,k with

the largest imaginary part, then denote the related mode

profile in the expression of Eq. (11) as ϵa,b(x, t). A comb is

stable if and only if all perturbations decay over time, which

requires Im(𝜔F,k) < 0 for all k, equivalently Im(𝜔F) < 0.

(a)

(b)

Figure 1: The Floquet frequencies𝜔F and the spectra resulting from𝜔F > 0. The original comb lines are located at𝜔
m
=𝜔0 + m𝜔d for

m = 0,±1,…, with𝜔0 being the comb center and𝜔d the repetition rate. In the left column, pink arrows are the Floquet frequency 𝜔F and its partner

eigenvalues in other zones, namely
(
−𝜔∗

F
+ k𝜔d

)
and (𝜔F + k𝜔d), evolving with the pumping strength. (a)𝜔F crosses the real axis at an irrational

ratio to𝜔d, resulting in a randomly fluctuating spectrum. (b)𝜔F reaches the zone boundary (0.5𝜔d) simultaneously with
(
−𝜔∗

F
+𝜔d

)
below the real

axis, then splits into two non-degenerated solutions, which we label as𝜔F and𝜔F,↓, respectively.𝜔F crosses the real axis along the zone boundary,

while𝜔F,↓ is repelled down. Such behavior leads to another comb with half the repetition rate as the original comb.
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3 Bistability and period doubling

cascade of EP combs

While the imaginary part of the primary Floquet fre-

quency𝜔F generally determines the stability of a frequency

comb, the real part implies how the comb evolves after

it becomes unstable. Specifically, period doubling occurs

when (i) Im(𝜔F) = 0 and (ii) Re(𝜔F) = 0.5𝜔d. Under condi-

tion (i), a random perturbation reduces to a single Floquet

mode over time, 𝜖(x, t)→ e−i(𝜔0+𝜔F )t g(x, t), where g(x, t) =(
𝜖a + 𝜖∗

b
e2i𝜔Ft

)
. A stronger pumping will lead to the non-

linear effect of wave mixing between the growing Floquet

mode and the original comb. If Re(𝜔F)∕𝜔d is irrational,

suchwavemixing processwill generate an overcomplicated

lasing spectrum spreading over all frequencies, illustrated

in Figure 1a. However, condition (ii) indicates that g(x, t +
2𝜋∕𝜔d) = g(x, t), hence 𝜖(x, t) consists of Fourier compo-

nents at𝜔0 + (m+ 0.5)𝜔d, right in themiddle of the existing

comb lines. Therefore, wavemixing only generates frequen-

cies of𝜔0 + 0.5m𝜔d, forming another frequency comb with

half the repetition rate as before, as shown by Figure 1b.

The fact that 𝜔F reaches exactly 0.5𝜔d in condition (ii) is

not a coincidence. As discussed in Section 2, both 𝜔F and

−𝜔∗
F
+𝜔d are eigenvalues of Eq. (14). These two frequencies

are necessarily symmetric about the Floquet zone boundary

at 0.5𝜔d, and are therefore constrained to appear as a pair.

Consequently, when 𝜔F reaches the zone boundary, it must

collide with its partner. As the pumping strength increases

further, this degeneracy splits in one of two possible ways:

horizontally or vertically. In the case of horizontal splitting,

the two solutions acquire different real parts while main-

taining the same imaginary part. They remain paired and

generically move away from the zone boundary, yielding

irregular dynamics if they reach the real axis as illustrated

in Figure 1a. In contrast, vertical splitting keeps both solu-

tions pinned to the zone boundary with equal real parts but

different imaginary parts, such that each solution becomes

its own partner. We denote these vertically separated solu-

tions as 𝜔F and 𝜔F,↓ in Figure 1b, where 𝜔F is the one that

eventually crosses the real axis. Any deviation from this

behavior – for example, if one branchwere to leave the zone

boundary – would require the appearance of additional

solutions such as −𝜔∗
F
+𝜔d or −𝜔∗

F,↓
+𝜔d, violating the

conservation of eigenvalue count𝜔F,k as defined in Eq. (14).

We demonstrate such period doubling mechanism in

a one-dimensional EP laser cavity shown in Figure 2a.

We adopt a smooth pumping profile Dp(x) = 0.5Dmax[1−
cos(2𝜋x∕L)] to improve the accuracy of the finite-difference
time-domain (FDTD) simulations. Figure 2b shows the tra-

jectories of two eigen frequencies solved from Eq. (7); they

(a)

(b)

Figure 2: The EP laser with gain-loss coupled cavity. (a) A 1D laser cavity

with gain on the left and loss on the right. The length of the gain cavity is

L and the length of the loss cavity is L2 = 1.2L. The absorption rate inside

the loss cavity is 𝜎∕𝜀0 = 7.6(c∕L). The passive refractive index√𝜀
c
is 3.4

in the gain cavity and 3.67 in the passive cavity, typical values of

commonly used semiconductor lasing materials. x0 is the location where

we plot the field intensity in Figure 3 and the phase portraits in Figure 5.

The values of all passive parameters, including the thickness and

the index of each layer, are elaborated in supplementary section II.

(b) the trajectories of two near-EP resonant frequencies solved from

Eq. (7). The first lasing threshold is Dth
1
= 1.2. Dashed lines show

the would-be above-threshold trajectories in the absence of gain

saturation.

are tuned near an EP at the first threshold Dmax = D
th
1
,

where �̃�0 reaches the real axis, as shown in Figure 2b.

Without nonlinear gain saturation, �̃�0 would move quickly

upward as Dmax increases above D
th
1
, while �̃�1 would almost

stay still, due to the counteraction between being pumped

and being repelled by �̃�0.

For this system, the frequency gap |Re(�̃�1 − �̃�0 )| =
0.03(c∕L) at the first threshold is an estimation to the rep-

etition rate of the EP comb near the comb threshold. It

is approximately 30 times smaller than the gain cavity’s

FSR, 𝜔FSR = 𝜋c∕√𝜀c ≃ 0.9(c∕L). Without tuning the sys-

tem closer to the EP, we now show how the repetition

can be significantly reduced through period-doubling cas-

cade. Figure 3a shows the PALT calculation of the laser

states depending on the pumping strength. The upper panel

shows a continuous transition from the single lasing mode(
D
th
1
< Dmax ≤ Dth

c

)
to the major comb line E0(x0) across the

comb threshold Dth
c
. The lower panel shows the correspond-

ing repetition rate of the EP combs above Dth
c
. Different

comb solutions are labeled as “C”-branches with different

colors. Figure 3b shows the solutions of primary Floquet

frequencies 𝜔F for the EP combs in Figure 3a. Stable combs
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(a) (b)

Figure 3: Pump dependence of EP combs. (a) PALT calculation of EP combs. (Upper panel) The intensity of central comb line and (lower panel)

the repetition rate of EP combs. (Solid lines) Stable solutions and (dashed lines) unstable solutions. (Blue diamonds) the boundaries of bistability.

(circles) Period doubling, where𝜔d drops by half. (b) The imaginary part (upper panel) and real part (lower panel) of primary Floquet frequencies𝜔F

solved from Eq. (14) for the combs in a. The inset is the trajectory of C2’s Floquet frequency𝜔F in the complex plane, where arrows indicate

the increasing of Dmax. The result corresponds the case of vertical splitting illustrated in Figure 1b.

are associated with Im(𝜔F) < 0. After an𝜔F crosses the real

axis, the corresponding comb transits from one branch to

another.

The filled circles in Figure 3a mark the thresholds

of period doubling, corresponding to the points where

𝜔F = 0.5𝜔d in Figure 3b. Above each of these thresholds,

the repetition rate reduces by half, shown in the lower

panel of Figure 3a. Figure 4 shows the PALT calculation

and FDTD simulation of the lasing spectra at several dif-

ferent pumping strengths selected from Figure 3. The extra

comb lines induced by the Floquet mode can be identi-

fied on the comb spectrum at Dmax = 4.8, compared to the

Figure 4: PALT and FDTD simulation of EP-comb spectra at different pumping strengths. Upper row shows the period-doubling cascade. The bi-stable

region is highlighted in orange. Orange arrows show two different paths of how an EP comb evolves. When the pumping Dmax increases regularly

from 2.0 to 8.0, the simulation converges to the spectra on the lower row for Dmax = 4.0 and 4.8, then jumps to C4 spectrum on the upper row.

When the pumping Dmax reduces regularly from 8.0 to 2.0, the simulation converges to the upper row for Dmax = 4.0 and 4.8, then jumps down to C1.
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spectrum at Dmax = 4.0. The two spectra also show similar

comb bandwidth, implying that the emergence of new comb

lines does not compromise the intensity of the existing lines.

As the number of comb lines increases, solving PALT

and Eq. (14) becomes increasingly time-consuming due to

the large number of Fourier components required to main-

tain accuracy. As a result, although both PALT and the

Floquet-theorem-based stability analysis are theoretically

sound, they become impractical beyond C4. In this regime,

FDTD simulations reveal a continuous spectrum at Dmax =
8.0, which can arise from one of two possible evolution

paths: either an infinite cascade of period doublings or a

random crossing of the real axis by 𝜔F, as illustrated in

Figure 1a. Additional simulation results provided in the Sup-

plementary Section III demonstrate two more period dou-

blings (i.e., C5–C6). Beyond this point, the repetition rate

becomes too small to resolve within the finite simulation

times considered here. A future theoretical framework is

needed to ultimately distinguish between these two evolu-

tion paths.

In addition to period doubling cascade, our stability

analysis also predicts bistable EP combswithin the pumping

range of 2.8 < Dmax < 5.6. In this region, both C1 and the

C2–C3–C4 chain are stable. The two stable branches are

accessed by different initial conditions. The accessibility is

demonstrated by FDTD simulations in Figure 4. First, we set

the pumping strength to be Dmax = 2.0 > Dth
c
and initialize

the simulation with a random pulse of the electrical field

inside the gain cavity. After the lasing state converges onto

the limit cycle, we increase the pumping strength by a small

step, and then continue the simulation. We iterate such

simulation process until Dmax = 8.0. The simulated comb

stays on C1 branch (lower row of the spectra in Figure 4),

then suddenly jumps up onto C4 (indicated by the right

arrow) as Dmax crosses the right end of C1 at 5.6. Second,

we start the simulation at Dmax = 8.0, then regularly reduce

the pumping strength. The simulated comb changes back-

wardly along C4→ C3→ C2, then suddenly jumps down

onto C1 as Dmax crosses the left end of C2 at 2.8 (indicated

by the left arrow). Thus, the simulation results demonstrate

both PALT and the stability analysis on EP combs.

Finally,we summarize the perioddoubling andbistabil-

ity phenomenausing the phase trajectories of EP combs. The

laser’s phase space is defined as amanifoldwith dimensions

of D as well as the real and imaginary parts of E and P from

Maxwell–Bloch equations Eqs. (1)–(3). A frequency comb is

then recognized as a limit cycle in the phase space [31]. For

the solutions in Figures 3a and 5 plots the projections of

their phase portraits on the D(x0, t)–Re[E(x0, t)] plane. The

red dot in the upper left plot is the single-mode lasing state,

known as a fixed point. The first row shows how the fixed

Figure 5: The projection of phase portraits on the plane of population

inversion versus electrical field at x = x0. The horizontal axis is

the population inversion D
s
(x0, t) and vertical axis is the envelope of

the electrical field E
s
. Line styles and colors are consistent with Figure 3.

point opens and continuously extends into a stable limit

cycle. The second row shows the limit cycle shifting from an

attractor (right) to a repeller (middle), then reverting to an

attractor (left) again. This gives rise to bi-stability. The third

row shows period-doubling cascade, where the limit cycle

with a basic period doubles its orbit twice.

4 Conclusions

In this work, we develop a limit-cycle stability analysis

based on Floquet theory. The analysis predicts the novel

phenomena of bi-stability and period-doubling cascade of

frequency combs in EP lasers. Period doubling cascade

occurs when the Floquet frequency crosses real axis at half

of the comb’s repetition rate. It reduces the repetition rate

without shrinking the comb bandwidth, hence allowing for

the design of extremely compact OFC generators. The the-

oretical results are confirmed by FDTD simulations. The

four-wave mixing phenomenon observed in a laser diode

coupled to a high-Q resonator [32] may represent an exper-

imental demonstration of such period-doubling cascade in

EP combs. This systempossesses all the essential ingredients

of an EP: two modes with similar frequencies (one from the

laser diode and the other from the high-Qmicro-ring cavity),

field coupling via backscattering, and gain-loss compensa-

tion (gain from the lasingmaterial and loss from the passive

cavity).

Our perturbation analysis can be extended to solve

scattering problems of periodically-driven nonlinear

systems. By including a term of incident wave in Eq. (11),

one can re-derive Eq. (14) with an extra inhomogeneous
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source term. The Flouqet frequency will then be recognized

as 𝜔in −𝜔0, where 𝜔in is the frequency of the incident

wave. Future work can study the scattering spectrum of

EP lasers by solving such inhomogeneous perturbation

equation.
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