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Abstract
Wepresent a k p· theory of photonic crystals containing gain and loss inwhich the gain and loss are
added to separate primitive cells of the underlyingHermitian system, thereby creating a supercell
photonic crystal.We show that the supercell bands of this system canmerge outward from the
degenerate contour formed from folding the bands of the underlyingHermitian system into the
supercell Brillouin zone, but that other accidental degeneracies in the band structure of the underlying
Hermitian systemdonot yield bandmerging behavior. Finally, we show that themodal coupling
matrix in PhCswith balanced gain and loss is trace-less, and thus the imaginary components of the
eigenvalues can onlymove relative to one another as the strength of the gain and loss is varied, without
any collectivemotion.

1. Introduction

Nature provides only a few fundamental ingredients for designing photonic devices, changing the phase of a
signal through shifts in the refractive index, and altering the amplitude of a signal using gain and loss. Exploiting
index contrast has yielded enormous advances in control of the flowof light, and is a central feature ofmodern
device design [1]. In contrast, gain and loss have typically been viewed primarily as either a requirement for light
generation or amplification, or as something to be strictly avoided, respectively. However, recently there has
been substantial interest in the potential benefits and unique behaviors which are possible in systems containing
patterned gain and/or loss. The initial interests on these systems are generated by the physics associatedwith
parity-time ( ) symmetry, inwhich the eigenvalues of the system form complex conjugate pairs after
coalescing at an exceptional point [2–23]. Subsequently, these significant developments in  symmetric
devices have also led to the discovery of other types of systemswhose eigenvalues come in complex conjugate
pairs [24–28], or exhibit counterintuitive phenomena [29].

As an important class of systems exhibiting patterned gain and loss, in the past few years the properties of
multidimensional photonic crystals (PhCs)with gain and loss have been considered, and PhCswith 
symmetry have been shown to possess an array of intriguing properties.  symmetric periodic systems exhibit
bandmerging behaviors which leads to the formation of rings and contours of exceptional points [5, 30–32], a
 superprism effect, an all-angle supercollimation effect, and the opening of band-gaps [33]. Increasing the
strength of the gain and loss in the system can also result in the coalescence of exceptional points [34]. Band
merging effects and exceptional rings have also been observed in passive PhC slabs containing an accidental
degeneracy [35], in which the non-Hermitian behaviors are acquired through the radiative losses of the
resonances of the PhC slab. In some of these previously studied systems [30, 32, 35, 36], degeneracies in the
underlyingHermitian systemhave been used to decrease the experimental requirements for observing the
aforementioned behaviors. This can be accomplished through the judicious addition of the gain and loss
resulting in the coupling of themodes of the underlying systems forming such a degeneracy, leading to the
eigenvalues becoming complex for any non-zero strength of the gain and loss [37]. Overall, these studies of PhCs
with gain and loss have the potential to dramatically expand the capabilities of photonic circuits and devices.
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In this article, we develop a theory of supercell PhCs inwhich the gain and loss is balancedwithin each
supercell, but are not necessarily  symmetric. Using this analytic theory, we show that bandmerging
originating from a degenerate contour formed by supercell band folding, found in  symmetric PhCs, also
persists for thismore general class of systems, but does not occur for other accidental degeneracies in the band
structure of the underlyingHermitian system. In particular, the inability for a supercell PhCwith balanced gain
and loss to couple accidental degeneracies allows for the formation of photonic band gaps via gain/loss
modulation. Finally, we show that themodal couplingmatrix in PhCswith balanced gain and loss is trace-less,
and thus the imaginary components of the eigenvalues can onlymove relative to one another, without any
collectivemotion.

The remainder of this article is organized as follows. In section 2we review the theory of supercell PhCs, and
use a k p· theory to illuminate the role of degeneracies in such systems. Section 3 provides a discussion of the
properties of  symmetric PhCs. Then, in section 4, we expand the theory of supercell PhCs to incorporate
systemswhich have balanced gain and loss, but are not necessarily  symmetric. Finally, some concluding
remarks are given in section 5.

2. Review of supercell PhCs

The fundamental goal of designing a ‘supercell’ photonic crystal is to create contours of degeneracies within the
Brillouin zonewhose states can then be immediately coupled through the non-uniform application of gain and
loss. To create such degenerate contours in the band structure, we consider PhCs inwhich the application of gain
and loss expands the primitive cell of the system,which results in each band of the original primitive cell of the
underlyingHermitian systembeing folded intomultiple bands in the reduced Brillouin zone of the non-
Hermitian system. An example of this folding process is shown infigure 1. Thefirst transversemagnetic (TM)
band of theHermitian system,figure 1(b), is folded into four bandswhen the primitive cell of the system is
increased to contain four elements, as shown infigure 1(d). (TMmodes have their electric field oriented along
the z-axis.) In this case, the folding process has produced degenerate contours between the first and second, as
well as the third and fourth bands along theX–M andY–M directions, in addition to a degenerate contour
between the second and third bands along theΓ–M direction. As can be seen, this folded band structure of the
Hermitian system contains all of the same information as the unfolded band.However, when gain and loss are
added such that thisfictitious primitive cell of theHermitian systembecomes the true primitive cell of the non-
Hermitian system, such as the distribution of gain and loss shown infigure 2(a), themodes comprising the
degenerate contours can couple, as shown infigures 2(b) and (c). For semantic convenience, wewill henceforth
refer to the primitive cell of the non-Hermitian system as the ‘supercell,’ and reserve ‘primitive cell’ to refer to
the primitive cell of the underlyingHermitian system.

Figure 1. (a) Schematic of a two-dimensional PhCs formed of dielectric circular rods, 12e = , with radius l a0.3= , embedded in air,
1aire = , where a is the lattice constant of the primitive cell. The unit cell considered is denoted by the black dashed square. (b)Thefirst

TMband of the PhC from (a) is plotted in the primitive Brillouin zone. (c), (d) Schematic andfirst primitive cell band of the same PhC
as (a), but evaluated instead over a supercell containing four dielectric rods. Because of this, the lone band in (b) is seen to be folded
into four constituent bands in (d) as the size of the supercell Brillouin zone is reduced.
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Tounderstand the coupling process which can occur at these degenerate contours, onemust calculate the
band structure of the PhC,which is defined by the solutions of
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inwhich E xmk( ) is themode profile of themth band of the supercell non-Hermitian systemwithwavevector k
and frequency kmw ( ). The dielectric of the underlyingHermitian system is given by xe ( ), which is assumed to be
periodic over the set of lattice vectors which define the primitive cell, ai{ }, such that x a xie e+ =( ) ( ). The
distribution of the additional gain and loss is given by g x( ), while 0t represents the strength of the added
gain and loss. Regions of gain have g x 0<( ) . The supercell is assumed to have lattice vectors Ai{ }, which are
comprised of integermultiples of the primitive cell lattice vectors, nA ai j ij j= å , such that g gx A xi+ =( ) ( ).
Given the periodicity of the structure, themode profiles obey the supercell translational symmetry,
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Wenowuse a k p· theory [38–40] to elucidate the effect of changing the strength of the gain and loss from
the properties of the underlyingHermitian system. To do so, we expand themode profiles of the non-Hermitian
system atwavevector k over the basis of states of the underlyingHermitian system atwavevector k0,
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Here, E xlk
0 ( )( ) has frequency kl

0w ( )( ) and satisfies equation (1)with 0t = , andCml are the complexmodal
expansion coefficients. Using themode profiles of the underlyingHermitian systemprovides the additional
benefit of allowing us to normalize thewave functions in the usualmanner,
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where SC denotes performing the integral over the supercell.
Bymultiplying equation (1) through by E xl k

0 *¢( ( ))( ) and integrating over the supercell, wefind the equation
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which can bewritten as an explicitmatrix equation as
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inwhichCm is a column vector with elementsCml. For the ease of the following analysis within section 2, we have
specialized to 2DTMbands and hence the electric field becomes a scalar, but a full vectorial treatment is
straightforward [40]. In equation (6),G contains the effects ofmodal coupling through the gain and loss

G g E Ex x x xd 7l l l lk k
SC
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and in generalGwill have both diagonal and off-diagonal elements. Likewise, k k, 0W( ) contains information
about the underlyingHermitian system,

Figure 2. (a) Schematic of a two-dimensional PhCs formed of dielectric circular rods, 12e = , with radius l a0.3= , embedded in air,
1aire = , where a is the lattice constant of the primitive cell. The unit cell considered is denoted by the black dashed square. The red

rods contain gain, with a relative strength of 1, while the blue rods contain loss, with a relative strength of 1/3. As such, the gain and
loss are balancedwithin each unit cell. (b), (c)The real and imaginary parts of thefirst four TMbands of this PhCwhen 3t = .
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inwhich s k k0= - . Here, the frequencies of the underlyingHermitian system are contained along the
diagonal ofΩ, while the effects of choosing k k0¹ are given by
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Equation (6) is an exact restatement of equation (1), but benefits from the explicit isolation of the effects of
the strength of the gain and loss from the properties of both the underlyingHermitian system, as well as the
distribution of the non-Hermitianmaterial.Moreover, there is an advantage to using themodes of the
underlyingHermitian system as a basis set: thesemodes can be chosen to obey an additional ‘hidden’
translational symmetry due to the primitive cell translational symmetry of xe ( ) [41]. As the supercell with 0t =
is an exactN-fold copy of the primitive cell, there are exactlyN vectors cj{ }which are integermultiples of the
primitive cell lattice vectors, such that translating the primitive cell along theseN vectors generates the supercell.
Likewise, there areN vectors, Lj{ }, which are integermultiples of the supercell reciprocal lattice vectors, such
that translating the supercell Brillouin zone along theseN vectors generates the primitive Brillouin zone. The
band folding that results from considering a supercell of the underlyingHermitian PhC, such as the band
structure shown infigure 1(d), requires that each band in the primitive Brillouin zone is folded intoN bands of
the supercell. Thus, we can relabel themode profiles as l j,n= ( ), where the lth band of the supercell is the jth
fold of the νth band in the primitive Brillouin zone. The hidden translational symmetry of the supercell
Hermitian system then allows for the states E j k,

0
n( )

( ) to be chosen such that [41]
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This hidden translational symmetry of the underlyingHermitian system imposes strong selection rules upon the
couplingmatrices [32],

P 12j j jj, , d~n n¢ ¢ ¢ ( )( )( )

Q . 13j j jj, , d~n n¢ ¢ ¢ ( )( )( )

3. Parity-time symmetric PhCs and exceptional contours

Up through this point in reviewing the theory of supercell PhCs, no requirements have beenmade upon the
distribution of gain and loss beyond the expansion of the primitive cell of the system.However, tofinish the
analysis of why degenerate contours are important features in supercell PhCs, we nowbriefly specialize to 
symmetric systems.

In  symmetric systems, the distribution of gain and loss is odd about a chosen axis. This yields an
additional selection rule on themodal couplingmatrixG [32],
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Thus, in the neighborhood of a two-fold degenerate contour, s A 2 1i p · , the system can be approximated as
a two-level system, and equation (6) can be rewritten as
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inwhich the labels 1 and 2 refer to the two supercell bands forming the degenerate contour. As the two-level
approximation ofΩ is diagonal from equations (12) and (13), the only coupling between the two levels in
equation (15) comes from the application of the gain and loss.

In general, for  symmetric systems, as gain and loss are added to the system, every pair of frequencies
with the same k will begin tomerge together until coalescing at an exceptional point, beyondwhich the two
frequencies will form complex conjugate pairs. In particular, if we choose the origin for the k p· expansion, k0,
to lie along the degenerate contour, k k1

0
0 2

0
0w w=( ) ( )( ) ( ) , thenwe can see that any non-zero amount of gain and

loss will lead frequencies along the degenerate contour to form complex conjugate pairs. Furthermore, as the
bands separate as s is increased away from the degenerate contour, increasing amounts of gain and loss are
needed tomake these frequencies coalesce. Thus, it can be shown that within the two-level approximation, the
strength of the gain/loss required for the frequencies at a particular location inwavevector space to coalesce, tht ,
is dependent upon the distance of that location to the nearest point on the degenerate contour, ŝ , to leading
order,
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Thus, as gain and loss are added to a periodic system in a  symmetric distribution, the degenerate contours
undergo threshold-less  transitions, while at locations further away from the degenerate contour in
wavevector space, the frequencies coalesce for increasing τ. This bandmerging process is shown infigure 3,
which uses the same underlyingHermitian system as is shown infigure 1(a), but with equal gain and loss added
to alternating columns of dielectric rods so as to form a  symmetric PhC. The boundary between the band
merged and unmerged regions forms a contour comprised entirely of exceptional points, i.e. an exceptional
contour, which originates immediately adjacent to the degenerate contour for small but non-zero τ, and then
moves away from the degenerate contour as τ is increased, leaving a region of frequencies which form complex
conjugate pairs in its wake. Finally, tofirst order in s, the real part of the frequencies within the bandmerged
region become equal to the frequency of the nearest point on the degenerate contour, k0

0w ( )( ) , creatingflat
isofrequency contours inwavevector space. However, as wewill show in the next section, this is in fact amore
general feature of PhCswith balanced gain and loss.

4. Systemswith balanced gain and loss

Previously, the theory of supercell PhCs, developed in section 2, has been applied to understand the behavior of
the band structure of  symmetric PhCs, as discussed in section 3. In this section, we instead apply this theory
to elucidate the band structure behavior of supercell PhC systems inwhich the gain and loss is balancedwithin
each supercell, but are not necessarily  symmetric. Using this analytic theory, we show that bandmerging
originating from a degenerate contour formed by supercell band folding, discussed in section 3 for 
symmetric PhCs, also persists for thismore general class of systems, but does not occur for other accidental
degeneracies in the band structure of the underlyingHermitian system. In particular, the inability for a supercell
PhCwith balanced gain and loss to couple accidental degeneracies allows for the formation of photonic band
gaps via gain/lossmodulation. Finally, we show that themodal couplingmatrixG in PhCswith balanced gain
and loss is trace-less, and thus the imaginary components of the eigenvalues can onlymove relative to one
another, without any collectivemotion.

As an analytic approach, we assume that the gain and loss are simply added to separate primitive cells (PCs)
of the underlying system, and need not be distributed in a  symmetricmanner, such that

g gx x x, PC , 17n ne= Î( ) ( ) ( )

inwhich gn represents the gain or loss added to the nth primitive cell, PCn. Although it is possible to conceive of
PhCswith balanced gain and loss which do not satisfy this criteria, adding gain and loss to separate elements of
the PhC represents themost experimentally feasible construction of such a system.Using equation (17)we
rearrange equation (7) as

Figure 3. (a) Schematic of a two-dimensional PhCs formed of dielectric circular rods, 12e = , with radius l a0.3= , embedded in air,
1aire = , where a is the lattice constant of the primitive cell. The unit cell considered is denoted by the black dashed square. The red and

blue rods contain gain and loss, respectively, with equal strength. (b), (c)The real and imaginary parts of the first twoTMbands of this
PhCwhen 2t = . The cyan region in (b) denotes where the bands have coalesced, and the constituent frequencies form complex
conjugate pairs.

5

New J. Phys. 18 (2016) 125007 ACerjan and S Fan



G g x E x E x xd , 18j j
n

N

n j jk k, ,
1 PC

,
0

,
0

n

*òå e=n n n n¢ ¢
=

¢ ¢( )( ( )) · ( ) ( )( )( ) ( )
( )

( )
( )

where now the integrals are performed over each of theNPCswhich comprise the supercell.
Equation (18) can be simplified by using the hidden translational symmetry of the states E j k,

0
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( ) . Each integral

over a constituent primitive cell is related to the fundamental primitive cell by x x cn= ¢ + , in which x PCnÎ ,
x PC1¢ Î , andwhere the fundamental primitive cell, PC1, is defined as the primitive cell with c 01 = . Thus,
equation (18) can be rewritten as,
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Here, the remaining integral is none other than the primitive cell orthogonality relationship,
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inwhich the factor of N1 is required for chosen normalization of the supercell states in equation (4). Thus, for
any supercell PhC, themodal coupling due to non-Hermitianmaterial can bewritten as
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This result has three important consequences. First, equation (21) demonstrates that supercell PhCs
satisfying the gain and loss patterning requirements of equation (17) can never achieve coupling between
different bands of the underlyingHermitian system. Thus, within the two-level approximation of the supercell
k p· theory, degeneracies which exist within the primitive Brillouin zone persist, and remain uncoupled, in the
supercell band structure even as gain and loss are added.However, higher order coupling effects are likely to lift
such degeneracies, and thus have the potential to open a photonic band gap. In particular, each bandwhich is a
part of such an uncoupled degeneracy is likely coupled to a different band elsewhere in the supercell Brillouin
zone, which can cause the entire band to shift slightly as part of the bandmerging process as τ is increased. Note
that this first consequence does not require the gain and loss to be balanced.

An example of this process is shown infigure 4, which shows a photonic crystal formed of gain and loss
patterned on top of a one-dimensional, uniformdielectric, and inwhich the gain and loss are chosen to be
balancedwithin each supercell. The folded band structure of this system is shown infigure 4(b), inwhich the
different bands of the primitive Brillouin zone are shown in different colors. As can be seen infigure 4(c), two
supercell bandswhich correspond to the same primitive band can couple, which results in theflattening of the
band nearΓ, while the two supercell bands originating fromdifferent primitive bands cannot, as observed in

Figure 4. (a) Schematic of a one-dimensional PhC inwhich the underlyingHermitian system is a uniformdielectric, 13e = , while the
gain and loss are patterned on top of the system such that the lossy region is three times longer than the gain region, but also three
times weaker, so that the gain and loss are balancedwithin each supercell. (b)Real parts of the bands for this PhCwhen 3t = . (c), (d)
Show a zoomed-in portion of the real part of the frequencies, as indicated by the dashed boxes in (b). (e), (f) Imaginary parts of the
bands for the same bands shown in (c) and (d), respectively.
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figure 4(d), consistent with the general discussion given in the previous paragraph. This effect has been observed
byMock in  symmetric PhCs formed by patterning gain and loss on top of uniformunderlyingHermitian
systems [33], but herewe have proven that this effect is generally present in systemswith patterned gain and loss,
and should also be observable in systems containing accidental degeneracies [42, 43].

The second important consequence of equation (21) is that if the gain and loss in the system are balanced,
then there is no self-coupling through the non-Hermitianmaterial,

g G0 0. 22
n

N

n j j
1

, ,å =  =n n
=

( )( )( )

Thismeans that in any supercell systemwith balanced gain and loss thematrixG is trace-less, andmoreover in
the neighborhood of a two-fold degenerate contour the system can be approximately described by equation (15).
Thus, as the strength of the gain and loss is increased, the coupled bandswillmerge outward from the degenerate
contours, formingflat regions and complex conjugate frequency pairs, similar towhat is seen in a  symmetric
system, and given by equation (16). An example of this bandmerging process for a PhCwith balanced gain and
loss can be seen infigure 5, which shows the band structure along the irriducible Brillouin zone boundary for the
same PhC shown infigure 2(a). Here, nearX along theΓ–X direction, two sets of coupled bands are seen to be in
the process ofmerging, forming nearlyflat regions perpendicular to the associated degenerate contour, which
runs along theX–M direction, and possessing large imaginary components which are nearly complex conjugate
pairs. NearX, thefirst (blue) band ismergingwith the second (green) band, and likewise the third (yellow) band
ismergingwith the fourth (red) band. Similarly, along themajority of theΓ–M direction, the second (green) and
third (yellow) bands are seen to bemerged, forming nearly complex conjugate pairs with large imaginary
components along this direction.

In the vicinity of a two-fold degenerate line, the bandmerging behavior found in PhCswith balanced gain
and loss is similar to the bandmerging behavior observed in  symmetric PhC systems as described in
section 3. The only difference between the coalescence observed near two-fold degenerate contours in PhCs
which have balanced gain and loss, but are not  symmetric, and  symmetric PhCs, is that the coalescence
in the former does not produce an exceptional contour, as the real parts of the frequencies are not exactly equal.
This can be understood as a consequence of the slight impedencemismatch that exists between the gain and loss
elements, as in non- symmetric systems gain losse e¹∣ ∣ ∣ ∣, which breaks the exact symmetry that yields an
exceptional point in  symmetric systems. Thus, although the two-levelmodel in equation (15) predicts that
PhCswith balanced gain and loss should also exhibit exceptional contours, the two-level approximation in this
case omits someweak coupling elements ofG. In contrast, no such omission of the elements ofG is required to
construct a two-levelmodel of the  symmetric PhC shown infigure 3.

At this point, we should note that the distribution of gain and loss in the PhC shown infigure 2 is not exactly
described by the condition specified in equation (17), as gain and loss have not been added to the air surrounding

Figure 5.Band structure for the PhC shown in figure 2(a) around the irreducible zone boundary. The real parts of the bands are shown
in the top panel, while the imaginary parts of the bands are shown in the bottompanel. The gray dashed line in the bottompanel plots
the sumof the imaginary parts of the four frequencies shown.
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the dielectric rods.Nevertheless, equation (17) provides an excellent approximation for systems comprised of
high- and low-dielectric regions inwhich gain and loss are only added to the high-dielectric portions for two
reasons. First, the amount of gain/loss omitted from the low-dielectric region is already less than the amount in
the high-dielectric region by the ratio 0.1low highe e ~ . And second, we expect themode profiles to be
concentrated in the high-dielectric regionswhere theywill be relatively unaffected by the presence or absence of
gain or loss in the low-dielectric regions. As such, we expect the theory developed here to be applicable tomost
experimental systems.

The third consequence of equation (21) is that the eigenvalues of systemswith balanced gain and loss can
onlymove relative to one another, as their average isfixed.One can observe this behavior in the bottompanel of
figure 5, where the imaginary part of the eigenfrequencies for the four bands sum to near-zero for every k . To
explain this behavior, we first note that the couplingmatrixG does not couple bandswhich originate from
different bands in the primitive Brillouin zone. As such, when k k0= , equation (6) is block diagonal, comprised
ofN-by-N blocks formed from the supercellmodes corresponding to the same unfolded band in the primitive
Brillouin zone. Thus, without loss of generality, we restrict our analysis to a singleN-by-N block of equation (6).
For small values of τ, we expect small deviations in the resulting band structure of the system, and as suchwe
expand the frequencies of the non-Hermitian system as k k km m

2 2w w dl= +( ) ¯ ( ) ( ), where
c Nk k ktr ,2 2w = W¯ ( ) [ ( )] is the average frequency of the set of supercell bands under consideration. Thus, to

first order in the small quantities τ and mdl , equation (6) can be approximated as

c I G C Ck k k k k k k k, i , 232 2 2w tw dW - - = L[ ( ) ¯ ( ) ¯ ( ) ( )] ( ) ( ) ( ) ( )

inwhich dL is the diagonalmatrix of the eigenvalues mdl , andC is thematrix whose columns are the coefficient
eigenvectorsCm.

Themain advantage of equation (23) is that it is an ordinary eigenvalue problem, rather than a generalized
eigenvalue problem. As such, the sumof the eigenvalues is given by the trace of the definingmatrix,

c I Gk k k k k ktr , i 0, 24
m

N

m
2 2 2ådl w tw= W - - =( ) [ ( ) ¯ ( ) ¯ ( ) ( )] ( )

inwhichwe have used the fact that Gtr 0=[ ] as shown in equation (22). Thus, the imaginary components of the
eigenvalues of the non-Hermitian system sum to zerowithin each set of folded supercell bands,

kIm 0m
N

m
2dlå =[ ( )] .While the proof above uses perturbation theory that is strictly speaking only for small τ,

equation (24) is confirmed numerically in the bottompanel offigures 5 even for 3t = .
The theoretical analysis presented here demonstrates a fundamental property of systemswith balanced gain

and loss: if onemode acquires gain or loss, that gain or lossmust be compensated by distributing an equal
quantity the opposite non-Hermitian behavior among the remainingmodes of the system. This property is
clearly observed in  systems, inwhich the eigenvalues appear in complex conjugate pairs. However, inmore
general systems that simply contain balanced gain and loss,more complex behaviors are possible. For example,
consider theMpoint from the system studied infigures 2 and 5.When 0t = ,M is four-fold degenerate, and as
τ is increased, all four of thesemodes couple together. However, unlike in a  PhC, these eigenvalues do not
form two complex conjugate pairs. Instead, a singlemode becomes strongly amplifying, and the remaining three
modes becomeweakly absorbing. This behavior is potentially useful if one is able to couple to a specificmode
through cavity engineering, as it allows for one to enhance a desired signal while simultaneously suppressing
noise in the remaining channels of the system.

5. Conclusion

In summary, we have presented a framework for understanding the eigenvalue dynamics of PhCs containing
balanced gain and loss as the strength of the gain and loss is increased.We have shown that in such systems the
imaginary portions of the frequencies of the bandsmove relative to one another, but that there is no collective
drift of the entire set of eigenvalues. In addition, we have also demonstrated that degenerate contours are a
critical element in the formation of regions of the Brillouin zonewith large imaginary frequency components.
Although herewe have focused on developing a theory of PhCswith balanced gain and loss, these results extend
to other similar systems, both periodic and isolated.
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