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We investigate the properties of two-dimensional parity-time symmetric periodic systems whose non-
Hermitian periodicity is an integer multiple of the underlying Hermitian system’s periodicity. This creates a
natural set of degeneracies that can undergo thresholdless PT transitions. We derive a k · p perturbation
theory suited to the continuous eigenvalues of such systems in terms of the modes of the underlying
Hermitian system. In photonic crystals, such thresholdless PT transitions are shown to yield significant
control over the band structure of the system, and can result in all-angle supercollimation, aPT -superprism
effect, and unidirectional behavior.
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There has been significant recent interest in the proper-
ties of parity-time symmetric systems, which are invariant
under the combined action of parity (P) and time reversal
(T ) operations. Such systems were initially explored due to
their connection to the theoretical foundations of quantum
mechanics [1,2]. Subsequently, PT symmetric optical
systems have garnered attention as they enable novel
capabilities for the control of light propagation [3–15].
In spite of substantial progress in this field, there remain

significant challenges and opportunities. First, the vast
majority ofPT symmetric structures in optics have focused
on either effective zero-dimensional systems, such as
coupled cavity systems [16–20], or one-dimensional sys-
tems, such as waveguide arrays [21,22], ring lasers [23], and
one-dimensional lattice systems [24–26]. A few recent
studies of specificmultidimensionalPT symmetric systems
have demonstrated exotic properties not found in low-
dimensional systems, such as band flattening and continu-
ous rings of exceptional points [4,27–29]. Yet despite these
promising initial results, a systematic exploration of higher
dimensionalPT symmetric systemshas not been previously
reported. Second, thresholdless PT transitions have been
recently discovered, for which the PT symmetry is sponta-
neously broken in the presence of an infinitesimal amount of
gain and loss [30]. Realizing thresholdless PT symmetry
transitions is of interest as they reduce the experimental
requirements for observing exceptional point physics.
However, there has not been a systematic approach for
achieving thresholdless PT symmetry transitions, espe-
cially in higher dimensional systems. In previousworks, one
typically acquires a thresholdless PT symmetry transition
from point degeneracies, either accidental [29], or from
lattice symmetry such as the Dirac point that arises in a
honeycomb lattice [27,28]. However, such point degener-
acies require careful engineering of the crystal geometry,
and are restricted to forming rings of exceptional points at
the PT transition boundary.

In this Letter, we provide a systematic study of higher-
dimensionalPT symmetric photonic crystals, and introduce
a general mechanism for realizing thresholdless PT tran-
sitions. We consider two-dimensional PT symmetric pho-
tonic crystals (PhCs), whose non-Hermitian primitive cell is
an integer multiple of the primitive cell of the underlying
Hermitian system. We show that under a very general set
of conditions, such systems always exhibit a thresholdless
PT transition in part of the wave vector space. Moreover,
such a system enables a new form of band structure
engineering, and can result in a PT -superprism effect,
unidirectional behavior, and all-angle supercollimation,
which are distinct from related effects in Hermitian
PhCs [31–35], and not all of which are present in previous
thresholdless transition schemes. Furthermore, our mecha-
nism is readily generalizable to more complex two-
dimensional systems, such as coupled cavity waveguides
[36,37], and three-dimensional systems.
To illuminate this process, as an example, we consider

the two-dimensional PhC formed of dielectric square rods
with alternating gain or loss of equal magnitude embedded
in air depicted in Fig. 1(a). The primitive cell of this
structure contains two square rods, one containing gain and
a neighbor containing loss. In the absence of gain and loss,
the underlying Hermitian system, shown in Fig. 1(b), has a
smaller primitive cell containing a single dielectric rod. For
semantic convenience, we will henceforth refer to this
larger primitive cell as the “supercell,” and reserve “primi-
tive cell” for the underlying Hermitian system.
The band structure of the underlying Hermitian system,

plotted with respect to the supercell, is shown in Figs. 1(c)
and 1(d) for the first and third sets of transverse magnetic
(TM) bands. We see that the band structure is folded along
the kx ¼ π=2a line, where a is the primitive cell lattice
spacing, creating a degenerate contour. As gain and loss
are added to the system, these degenerate contours expe-
rience thresholdless PT transitions immediately, while
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neighboring locations in wave vector space undergo ordi-
nary PT transitions, as can be seen in Figs. 1(e)–1(h). This
causes the folded bands to merge together outwards from
the degenerate contour, forming the requisite complex
conjugate pairs of frequencies, while the boundary between
the merged and independent regions is a contour comprised
entirely of exceptional points. In the wake of this folding

process, the bands nearly flatten in the x direction
perpendicular to the degenerate contour. The total propor-
tion of merged wave vector space as a function of τ is
shown in Fig. S1 in the Supplemental Material [38].
We now show that the behavior as observed above is

generally present in PT symmetric PhCs that have an
enlarged primitive cell (i.e., a supercell) as compared to the
underlying Hermitian system (i.e., a primitive cell). The
band structure of a PT symmetric PhC is defined by�

∇ ×∇ × −½εðxÞ þ iτgðxÞ�ω
2
nðkÞ
c2

�
EnkðxÞ ¼ 0; ð1Þ

in which EnkðxÞ is the mode profile of the nth band with
wave vector k and frequency ωnðkÞ, εðxÞ is the Hermitian
dielectric function of the PhC, and τ and gðxÞ are the
strength and distribution of the gain and loss in the PhC,
respectively. We assume that the primitive cell has a set of
lattice vectors fag such that εðxþ aiÞ ¼ εðxÞ, while the
supercell has lattice vectors fAg, which are usually integer
multiples of the primitive cell lattice vectors,Ai ¼

P
jnijaj,

such that gðxþAiÞ ¼ gðxÞ. We also define the supercell’s
reciprocal lattice vectors Bi, such that Bi ·Aj ¼ 2πδij.
Given the periodicity of the supercell, the mode profiles
obey the supercell translation symmetry

EnkðxþAjÞ ¼ eik·AjEnkðxÞ: ð2Þ
Finally, the gain and loss are applied such that gðxÞ ¼
−gð−xÞ, and we adopt the convention that τ ≥ 0.
Our objective is to explore the behavior of the band

structure in the vicinity of a particular set of k points such
as the degenerate contour. Thus, for a region of k space in
the neighborhood of a wave vector k0, we expand the
supercell wave functions at k in terms of those at k0 as

EnkðxÞ ¼
X
m

CnmðkÞeiðk−k0Þ·xEð0Þ
mk0

ðxÞ; ð3Þ

where Eð0Þ
mkðxÞ satisfies Eq. (1) with τ ¼ 0, and Cnm are the

complex expansion coefficients [39,40]. In doing so, we
avoid the difficulties associated with using the Bloch
modes of a non-Hermitian structure [4,6,8], and can
normalize the wave functions in the usual mannerZ

SC
εðxÞðEð0Þ

nkðxÞÞ� ·Eð0Þ
mk0 ðxÞdx ¼ δnmδðk − k0Þ; ð4Þ

where the integral is evaluated over the supercell.
Furthermore, since the supercell with τ ¼ 0 is an exact
N-fold copy of the primitive cell, there are exactly N
reciprocal lattice vectors that are integer multiples of
the members of fBg that generate the primitive Brillouin
zone from the supercell Brillouin zone, and are denoted
as L1;…;LN , such that Lj ¼

P
imiBi. Thus, as the

translational symmetry of the underlying Hermitian
system is described by the primitive cell, the states

Eð0Þ
mkðxÞ satisfy a “hidden” translational symmetry, and

can be chosen such that

FIG. 1. (a) Schematic of the 2D PhC comprised of square rods
with side length 0.6a of a dielectric, εdie ¼ 12, embedded in air,
εair ¼ 1, with a square primitive cell side length of a. The
primitive cell is indicated in gray, while the supercell contains
two primitive cells and is marked with a dashed border. When
τ ≠ 0, the red rods contain gain, while the cyan rods contain loss.
(b) Schematic of the underlying 2D Hermitian PhC. (c),(e) Real
part of the frequencies for the first (blue) and second (red)
supercell TM bands when τ ¼ 0 and τ ¼ 1.5. Locations where
the bands have merged are shown in magenta. (d),(f) Real part of
the frequencies for the fifth (blue) and sixth (red) supercell TM
bands when τ ¼ 0 and τ ¼ 1.5. (g) Imaginary part of the
frequencies for the first (blue) and second (red) supercell TM
bands when τ ¼ 1.5. Black denotes no imaginary component.
(h) Imaginary part of the frequencies for the fifth (blue) and sixth
(red) supercell TM bands when τ ¼ 1.5.
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Eð0Þ
mkðxþ ajÞ ¼ eiðkþLiÞ·ajEð0Þ

mkðxÞ: ð5Þ

Here, each supercell band m only satisfies this relationship
for a single element Lj [41]. Furthermore, each of the
supercell bands that correspond to the same unfolded band
from the primitive Brillouin zone satisfies Eq. (5) for a
different L.
Upon substituting Eq. (3) into Eq. (1), multiplying

through by ½Eð0Þ
lk0

ðxÞ��, and integrating over the supercell,
we find the matrix equation

X
m

�
ðω2

nðkÞ − ½ωð0Þ
m ðk0Þ�2Þ

δlm
c2

þ iτ
ω2
nðkÞ
c2

Glm

þ s · Plm − s2Qlm

�
CnmðkÞ ¼ 0; ð6Þ

where s ¼ k − k0 and ω
ð0Þ
m ðk0Þ is the frequency of the mth

band of the supercell system when τ ¼ 0. For ease of the
following analysis we have specialized to 2D TM bands,
but a full vectorial treatment is straightforward [38]. The
matrix element Glm contains the effects of modal coupling
through the gain and loss

Glm ¼
Z
SC

gðxÞðEð0Þ
lk0

ðxÞÞ�Eð0Þ
mk0

ðxÞdx; ð7Þ

while the elements Plm and Qlm represent the frequency
shifts due to displacements in k space for the Hermitian
system

Plm ¼ 2i
Z
SC

ðEð0Þ
lk0

ðxÞÞ�∇Eð0Þ
mk0

ðxÞdx; ð8Þ

Qlm ¼
Z
SC

ðEð0Þ
lk0

ðxÞÞ�Eð0Þ
mk0

ðxÞdx: ð9Þ

Note that the group velocity for each band is given by the
corresponding diagonal element of P as ∇kωmðk0Þ ¼
−c2Pmm=2ωmðk0Þ, which is true even for locations with

degenerate frequencies due to the requirement thatEð0Þ
mk0

ðxÞ
satisfy Eq. (5). Furthermore, the hidden translational
symmetry of the wave functions of the Hermitian supercell
system yields two important restrictions upon the coupling
matrix elements. First, it can be shown that by breaking up
the integrals over the supercell into the individual primitive

cell constituents, Plm and Qlm are only nonzero if Eð0Þ
lk0

ðxÞ
andEð0Þ

mk0
ðxÞ obey Eq. (5) for the sameLj [38]. Second, the

odd parity symmetry of gðxÞ results in Gmm ¼ 0. As the
wave functions for any point in k space form a complete
set, Eq. (6) is an exact restatement of Eq. (1) (although extra
considerations are necessary for vectorial fields [42]).
The application of gain and loss to the Hermitian system

couples pairs of bands in the supercell system that originate
from the same unfolded band of the primitive Brillouin
zone. Thus, we will assume that we can decouple any such

pair of bands from the rest of the system, and rewrite Eq. (6)
for the reduced two-band system as

ω2ðkÞ
c2

�
1 iτG12

iτG21 1

�
C ¼ Ωðs;k0ÞC; ð10Þ

where Ωijðs;k0Þ¼ f½ωð0Þ
i ðk0Þ=c�2− s ·Piiþ s2Qiigδij. By

setting s ¼ 0, the non-Hermitian PhC satisfies Eq. (10)
over all of k space, and Eq. (10) correctly reduces to the
Eq. (3) of Ge and Stone for systems with isolated modes
[30], except that Eq. (10) has been derived for systems with
continuous bands.
However, in contrast to previous works [25,30], we

can now choose k ≠ k0 to understand the band merging
process. To this end, we select k0 to be a degenerate
point of the supercell Hermitian system with frequency
ωð0Þðk0Þ, and solve for the frequencies of the non-
Hermitian system as

ω2

c2
¼ 2Ω11Ω22

Ω11 þ Ω22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ11 −Ω22Þ2 − 4Ω11Ω22τ

2jG12j2
p :

ð11Þ

As the two supercell bands originate from the same primitive
band, the association of Pii with the group velocity yields
two related conclusions. First, along the degenerate

contour ∂ωð0Þ
1 ðk0Þ=∂k∥ ¼ ∂ωð0Þ

2 ðk0Þ=∂k∥≡−c2P∥=2ωð0Þ,
while perpendicular to the degenerate contour

∂ωð0Þ
2 ðk0Þ=∂k⊥¼−∂ωð0Þ

1 ðk0Þ=∂k⊥≡−c2P⊥=2ωð0Þ, as the
unfolded band of the primitive cell is smooth. Thus, the
threshold for PT symmetry breaking to second order in
s ¼ ðs⊥; s∥Þ is

τTH≈

�����
s⊥P⊥ð1þ c2s∥P∥

½ωð0Þðk0Þ�2Þ þ
s2
2
ðQ22 −Q11Þ

jG12jðω
ð0Þðk0Þ
c Þ2

�����: ð12Þ

To first order, τTH is seen to be strictly dependent upon the
perpendicular displacement in wave vector space from the
degenerate contour, in agreement with the band structures
seen in Figs. 1(e) and 1(f). Furthermore, the second order
corrections yield an increase in the threshold calculated
about a particular k0 if s also contains a component parallel
to the degenerate contour. Thus, the correct (minimum)PT
threshold for any point k is calculated from the closest
location on the degenerate contour, and is seen to be strictly
dependent upon s⊥, demonstrating that the coupled bands of
the non-Hermitian system merge together directly outwards
from the degenerate contour continuously.
The flattening of the bands as they merge can be

understood by solving for the frequency at the exceptional
point (using s ¼ s⊥)

ωTHðkÞ ≈ ωð0Þðk0Þ
�
1þ c2s2⊥ðQ11 þQ22Þ

4½ωð0Þðk0Þ�2
�
; ð13Þ
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which is seen to be given by the associated degenerate
frequency with the leading correction being second order in
ð1=ωð0ÞÞ. As τ is increased beyond the threshold value for a
particular location in wave vector space, the dominant
change in the frequencies of the two bands is to acquire
imaginary components, leaving the bands nearly flat after
they merge.
The thresholdless PT transition of supercell PT sym-

metric PhCs can also be observed in the nonunitary
behavior of related finite systems. Figure 2(a) shows the
amplification and absorption as a function of incident angle
and τ for a single frequency incident upon a PhC slab
similar to Fig. 1(a), which is infinite in the x direction, but
finite in the y direction. The frequency chosen lies within
the range of frequencies comprising the degenerate contour
of the first pair of bands, Fig. 1(e), and thus exhibits a
thresholdless PT transition at a particular incidence angle.
As τ is increased, the area of the PT -broken region in k
space is increased, resulting in a wider range of incident
angles that yield amplification.
In Hermitian PhCs, the superprism effect refers to sharp

features in the isofrequency contours of a band structure,
where a small change in the incident angle of light yields an
enormous change in the refraction angle of the light inside
the PhC [31–33]. However, the exceptional contour of a
PT PhC separates a region of non-Hermitian behavior
from that of ordinary propagation. This yields a “PT -
superprism” effect, in which a small change in the incident
angle of the signal results in either unitary or nonunitary
behavior. For example, when τ ¼ 0.65, the system is unitary
atϕ ¼ 39°, and yet exhibits a tenfold increase in the net gain

with the small change of the incidence angle to ϕ ¼ 44°.
This effect could have applications as an optical switch.
Likewise, flat features in isofrequency contours act as

supercollimators, counteracting diffraction for incident beams
with a finite width whose Fourier components lie within the
flat contour [31,34,35]. As is seen in the band-merging
process in Figs. 1(c)–1(h), by changing τ, flat contours can
be designed with a desired width, potentially spanning the
entire Brillouin zone, or removed entirely, allowing for
tunable supercollimation or all-angle supercollimation for
frequencies with completely merged bands. This phenome-
non is in contrast to the circular isofrequency contours formed
by PT systems stemming from isolated point degeneracies
[27–29]. The effect of supercollimation can also be seen in the
field profiles of the finite PhC system, where within the PT -
broken region the wave function propagates entirely in the y
direction, as can be seen in the field profiles at the edge of this
region in Figs. 2(b) and 2(c). Finally, PT PhCs can exhibit
unidirectional behavior [38].
By changing the distribution of gain and loss in the

systemwhile maintainingPT symmetry, we can change the
location of the degenerate contour ink space.An example of
this is shown in Fig. 3(a), where the same underlying PhC
from Fig. 1(b) is considered with a different application of
gain and loss. The degenerate contour of the supercell
Hermitian system now lies along the X-Y contour of the
primitive Brillouin zone, Fig. 3(b), and as τ is increased, the

FIG. 2. (a) Nonunitary behavior as a function of incident angle
ϕ and PT symmetry breaking parameter τ for an s-polarized
plane wave source with ω ¼ 0.185ð2πc=aÞ incident upon a PhC
slab infinite in the x direction and with 50 layers in the y direction
for the same system shown in Fig. 1(a). ϕ ¼ 0 corresponds to
normal incidence in the y direction. The PhC slab is surrounded
by a passive dielectric with ε ¼ 3. Values of 0 correspond to
unitary behavior, while ½−1; 0Þ signifies absorption, and ð0;∞�
signifies amplification. The reflection and transmission coeffi-
cients were calculated using the Fourier modal method as
implemented in S4 [43]. (b),(c) Plot of the real part of the
electric field for the same structure with τ ¼ 0.65, and ϕ ¼ 40.9°
(b), or ϕ ¼ 63.8° (c). Field plots were generated using the freely
available MaxwellFDFD software package [44].

FIG. 3. (a) Schematic of the 2D PhC comprised of square rods
with side length 0.6a of a dielectric, εdie ¼ 12, embedded in air,
εair ¼ 1, with a square primitive cell side length of a. The
primitive cell is indicated in gray, while the supercell contains
two primitive cells and is marked with a dashed border. When
τ ≠ 0, the red rods contain gain, while the cyan rods contain loss.
(b),(c) Real part of the frequencies for the first (blue) and second
(red) supercell TM bands when τ ¼ 0 and τ ¼ 1.5. Locations
where the bands have merged are shown in magenta. (d) Imagi-
nary part of the frequencies for the first (blue) and second (red)
supercell TM bands when τ ¼ 1.5. Black denotes no imaginary
component.
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PT -broken region is seen to expand away from this contour,
Figs. 3(c) and 3(d). This enables a new form of band
structure engineering, as both the initial choice and potential
for electrical modulation of the degenerate contour result in
qualitative changes to the optical properties of the PhC.
In conclusion, we have demonstrated that the degener-

acies naturally generated in supercell PT symmetric
PhCs can yield new control over band structure design.
Experimentally, both the PT -superprism effect and all-
angle supercollimation can be observed in the analogous
system with alternating elements of no loss and double loss,
and thus should be observable in semiconductor based
systems with embedded absorption [38].
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