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Abstract: We derive and test a generalization of the steady-state ab initio
laser theory (SALT) to treat complex gain media. The generalized theory
(C-SALT) is able to treat atomic and molecular gain media with diffusion
and multiple lasing transitions, and semiconductor gain media in the free
carrier approximation including fully the effect of Pauli blocking. The key
assumption of the theory is stationarity of the level populations, which
leads to coupled self-consistent equations for the populations and the lasing
modes that fully include the effects of openness and non-linear spatial
hole-burning. These equations can be solved efficiently for the steady-state
lasing properties by a similar iteration procedure as in SALT, where a static
gain medium with a single transition is assumed. The theory is tested by
comparison to much less efficient finite difference time domain (FDTD)
methods and excellent agreement is found. Using C-SALT to analyze the
effects of varying gain diffusion constant we demonstrate a cross-over
between the regime of strong spatial hole burning with multimode lasing
to a regime of negligible spatial hole burning, leading to gain-clamping,
and single mode lasing. The effect of spatially inhomogeneous pumping
combined with diffusion is also studied and a relevant length scale for
spatial inhomogeneity to persist under these conditions is determined. For
the semiconductor gain model, we demonstrate the frequency shift due to
Pauli blocking as the pumping strength changes.
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38. B. Bidégaray, “Time discretizations for maxwell-bloch equations,” Numer. Meth. Partial Differential Equations

#230772 - $15.00 USD Received 15 Dec 2014; revised 16 Feb 2015; accepted 16 Feb 2015; published 2 Mar 2015 
(C) 2015 OSA 9 Mar 2015 | Vol. 23, No. 5 | DOI:10.1364/OE.23.006455 | OPTICS EXPRESS 6456 



19, 284–300 (2003).
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1. Introduction

Semiclassical laser theory describes an inverted gain medium coupled to classical electromag-
netic radiation described by Maxwell’s equation. It is sufficient to describe all properties of
interest in lasers (e.g. the number, spatial distribution, frequencies, output power and turn-on
thresholds for the lasing modes) except for those which arise from quantum fluctuations (such
as the linewidth). These equations are the main tool for modeling and design of lasers. The
full semiclassical laser equations are coupled non-linear partial differential equations in space
and time, describing the coupling of the polarization and level populations in the gain medium
to light, and are not easily solved even numerically. In most treatments the spatial variation
of the quantities in these equations is either completely neglected or addressed through an ap-
proximate expansion in closed cavity states which are taken to be orthogonal, hence turning
the resulting equations into coupled ordinary non-linear differential equations in time. Further-
more, the gain medium is often described as a simple two-level atomic system and modeled
using the Bloch equations.

The computational complexity of the laser equations is substantially increased when it be-
comes necessary to include many atomic levels and multiple lasing transitions in the mathemati-
cal description, as is necessary for many modern laser systems with complex gain media. Exam-
ples of such systems are standard semiconductor lasers [1,2], quantum cascade lasers [3,4], and
rotationally excited gas lasers [5]. For example, though the band structure of the semiconductor
gain medium can be approximated as a series of two level atomic transitions, multiple transi-
tions are required to represent the effects of Pauli blocking [6–8]. Cascaded-transition quantum
cascade lasers are specifically designed with two lasing transitions to operate at longer wave-
lengths [9,10]. Finally, in these lasers, and a number of others, the carriers or the gain atoms are
able to diffuse after injection or excitation, which tends to smooth out the effects of spatial hole
burning, and strongly affect the number of lasing modes for a given pump. This critical aspect
of laser modeling has received relatively little attention in the literature [4,11–13] and has been
treated only with great simplifications. One exception to this is the work of Böhringer and Hess,
who provide a more accurate account of the diffusion of gain carriers in semiconductor media,
but within the context of constructing a time-domain simulation algorithm [7]. It is possible
to include gain diffusion in brute force (FDTD) simulations, but this adds significant computa-
tional overhead that makes it difficult to simulate cavities in multiple dimensions [14,15]. While
such simulations are done in space and time they often are only aimed at finding the steady-state
lasing properties. In the current work we demonstrate how the effects of many levels, multiple
lasing transitions, and gain diffusion can all be included in a theoretical framework which leads
to a computationally tractable algorithm that directly calculates the steady-state properties. The
algorithm is efficient enough to treat both complex gain media and complicated resonator ge-
ometries. Below it is tested against FDTD results for simple one-dimensional cavities without
diffusion and excellent agreement is found. It is then applied to two-dimensional deformed disk
lasers, giving results which explain certain experimental observations. Calculations of this type
are beyond the scope of previous approaches to the semiclassical laser equations.

Our new framework is a generalization of the theoretical approach introduced by Türeci,
Stone, et al. now known as Steady-state Ab initio Laser Theory (SALT) [16–19]. This theory
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employs only a single important approximation, the stationary inversion approximation (SIA),
to treat multimode lasing, and is essentially exact for treating single-mode lasing; and it includes
fully the spatial degrees of freedom of the fields and the openness of the laser system. The
resulting SALT equations are frequency domain wave equations for the lasing modes, coupled
non-linearly through the spatially varying cross gain saturation. These equations can be solved
efficiently for the steady-state properties of laser cavities of arbitrary complexity, in any number
of dimensions. (The vector character of the lasing modes in three dimensions can also be treated
[20], but in this work we will analyze only scalar limits of the electromagnetic field equations).
This approach allows a clearer and partially analytic understanding of the lasing solutions, and
has already led to a number of new discoveries, such as mode frustration in partially pumped
cavities [21], control of emission properties of random lasers through selective pumping [22–
26], and, through a quantum generalization, a more general form of the Schawlow-Townes
linewidth formula [27–29]. For single transition gain media without diffusion, SALT has also
been shown to give excellent agreement with FDTD simulations at a substantially reduced
computational cost [30, 31]. In the case of a single transition the gain susceptibility for N-level
lasers can be explicitly calculated in terms of the stationary inversion profile and the lasing
fields and inserted into the wave equation so as to require only a single set of coupled electric
field equations [31]. It has been shown that in this case the N-level model can be reduced to the
two-level Maxwell-Bloch model with renormalized relaxation and pump parameters [31].

Such a simplification is not possible with multiple lasing transitions, because it is no longer
possible to associate a particular lasing mode with a particular pair of inverted levels, as we
will show below. Thus a significant generalization of the theory is required, and it will no
longer be possible to map the full solution to an effective Maxwell-Bloch model. However
we will show below that a more general stationarity assumption (The Stationary Population
Approximation, SPA) leads instead to coupled sets of field and population equations that can
be solved iteratively almost as efficiently as the SALT equations. The generalized theory, which
we call complex-SALT (C-SALT), allows us to treat steady-state lasing with (i) an arbitrary
number of atomic levels and lasing transitions, and (ii) gain diffusion, and, just as in SALT, the
full effects of non-linear spatial hole-burning are treated for an arbitrary cavity geometry.

The ability of C-SALT to treat multimode lasing in the presence of diffusion allows us to
demonstrate explicitly a fundamental aspect of laser physics: the competition between spatial
hole-burning and gain clamping/saturation. For a completely spatially uniform lasing mode
(e.g. in a ring laser), the mode which has the highest gain, after it reaches threshold, clamps
the gain allowing no further modes to turn on [32]. For the typical spatially non-uniform (e.g.
standing wave) mode, the effective gain varies in space (even with uniform pumping) because
where the existing lasing modes have high intensity the gain is highly saturated and reduced,
whereas near nodal regions of the lasing modes other modes can experience higher gain and turn
on. This is the standard spatial hole-burning effect, which allows multimode lasing. However,
if there is gain diffusion, then excited gain atoms/carriers tend to diffuse into the regions of low
field intensity, smoothing out the effective gain profile. Thus as a function of the strength of
the diffusion the laser will transition from highly multimode lasing to a more uniform single
or few mode lasing state. This picture is well known, but it has not been possible to study it
quantitatively in previous approaches, as we do below using the full C-SALT equations.

We identify two distinct physical situations in which carrier diffusion can have a substantial
effect. The first,as just discussed, is when the carrier diffusion competes with spatial hole-
burning in a uniformly pumped cavity, leading to a transition between multimode lasing to
a gain-clamping regime in which only a single lasing mode reaches threshold. We define a
crossover scale in the diffusion rate for this clamping to occur and test it in simulations. The
second situation is when carrier diffusion competes with non-uniform pumping so as to mitigate
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the spatial selection effects which occur in the absence of diffusion. A different crossover scale
is found to control this effect. We are not aware of prior quantitative theoretical studies of either
of these effects.

The remainder of this paper is organized as follows. In section II we introduce the semi-
classical lasing equations and analyze the most general conditions under which they lead to
steady-state multimode lasing. Section III derives the equations for the steady-state (A) for a
single transition, leading to the SALT equations (B),(C) for multiple lasing transitions and gain
diffusion, leading to the C-SALT equations, which are the main result of this work. Section
IV (A) demonstrates quantitative agreement between C-SALT and FDTD simulations for the
case of multiple lasing transitions without diffusion. (B) demonstrates the transition between
spatial hole-burning and gain clamping in the presence of of variable diffusion. In section V a
discussion of the Stationary Population Approximation is presented. Section VI demonstrates
how C-SALT can be used to simulate lasers described by a free-carrier semiconductor model.
Finally, a conclusion is given in section VII.

2. Overview of the semiclassical lasing equations

In this section we present the derivation of the equations of motion for the density matrix
elements for an atomic gain medium with an arbitrary number of levels and lasing transitions.
The basic steps here are well known but we want to take the opportunity to emphasize certain
key approximations which set the limits of the standard semiclassical approximation and also
to define our notation. As noted above, the semiclassical lasing equations neglect the operator
nature of the electromagnetic fields, so that the lasing fields are determined by Maxwell’s wave
equation (coupled to a quantum gain medium),

[
∇×∇×− εc

c2 (x)∂
2
t

]
E(x, t) =

4π
c2 ∂ 2

t Pg(x, t), (1)

where the effect of the passive cavity is described by the linear cavity dielectric function, εc(x),
which in general varies in space and frequency (although typically we will neglect the frequency
variation). The amplifying response of the gain medium is described by the non-linear gain
polarization, Pg, which acts as a source for this equation and includes contributions from all
of the lasing transitions of every gain atom in the cavity. At this stage we will assume that the
gain medium arises from independent identical atomic, molecular or defect centers; the case of
semiconductor gain media with band excitations acting as gain centers will described in Section
6 below.

The gain polarization can be expressed as

Pg(x, t) =−∑
α

δ (x−x(α))Tr[ρ̂(α)ex̂α ], (2)

in which the index α runs over all of the gain atoms in the cavity at locations x(α), e is the
charge of an electron, and the M ×M density matrix of atom α is denoted by ρ̂(α), where M
is the number of atomic levels involved in the lasing process. Among the M levels a subset
of them will contribute to lasing and support lasing transitions; the others will simply be part
of the downward cascade of electronic excitations involved in the pumping and emission in
steady-state. Lasing transitions will arise from pairs of level which have sufficiently large po-
larization due to their population inversion to contribute substantially to a lasing line at a nearby
frequency. These pairs have a dipole moment,

θθθ (α)
nm = e〈n|x̂(α)|m〉. (3)
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The dipole moment is always zero for n = m due to spatial symmetry. By assuming that the
full polarization can be expressed in terms of the density matrix for individual atoms, we are
ignoring interatomic coherence effects which are quite small for conventional lasers (but not
e.g. for polariton lasers).

To complete the semiclassical lasing equations, one must consider the quantum equations of
motion for the average polarization of the gain medium,

∂tPg(x, t) =−N(x)
M

∑
n

M

∑
m

∂t(ρnm)θθθ mn, (4)

where we have now assumed identical “atoms” and written the density matrix elements as
ρnm = 〈n|ρ̂|m〉, and we initially assume a fixed density of gain atoms N(x). The evolution of
the density matrix can be found from the Heisenberg equation of motion,

∂tρnm =
−i
h̄
〈n| [H0 +HI , ρ̂] |m〉, (5)

where the atomic Hamiltonian H0|n〉= En|n〉, and the interaction Hamiltonian can be written as
HI = ex̂ ·E(x, t). Upon evaluating the commutator and simplifying, the evolution of the density
matrix elements can be re-written as

∂tρnm =−iωnmρnm − i
h̄

M

∑
k

(θθθ nkρkm −ρnkθθθ km) ·E(x, t), (6)

where ωnm = (1/h̄)(En −Em) is the transition frequency.
From this equation, we can see that off-diagonal density matrix elements, which determine

the gain polarization, can couple to one another within manifolds of atomic transitions. If we
include all terms in the equation of motion, then the time evolution of a specific off-diagonal
element, ρnm, will depend not only on the level populations (ρnn,ρmm), but also on other off-
diagonal elements, i.e. on the polarization of other transitions. If this is the case one cannot
arrive at lasing equations of the standard form and one cannot define the polarization associated
with a specific transition. However, physically these off-diagonal terms correspond to coherent
multiple excitation, leading to effects such as electrically induced transparency, and inversion-
less lasing. Conventional lasers do not typically operate in this regime. To reach this regime, the
non-radiative relaxation rates between non-lasing transitions must be of similar order to those
between lasing levels, which makes it difficult for the gain medium to build up the necessary
inversion to lase [33]. As such, we will assume that we are in the weakly coupled polarization
regime and thus that off-diagonal density matrix elements depend only on the level populations
of that specific pair of levels. The equation of motion for the off-diagonal elements for such a
pair is

∂tρnm =−(γ⊥,nm + iωnm
)

ρnm +
i
h̄
(ρnn −ρmm)θθθ nm ·E(x, t), (m �= n) (7)

where we have now added the effect of environmental dephasing on the gain atoms in the
standard manner in terms of a transverse relaxation/dephasing rate γ⊥,nm.

With the above assumption, the total gain polarization can now be broken up into NT con-
stituent polarizations of each lasing transition,

Pg(x, t) =
NT

∑
j

p j(x, t) (8)

p+
j (x, t) =−N(x)ρnmθθθ mn (9)
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where each transition, previously labeled by the pair of levels, n,m, has been relabeled with a
transition index j, where p+

j is the positive frequency part of p j = p+
j +p−

j , and by definition
ωnm > 0.

From the form of the gain polarization as a transition sum, Eq. (8), it is clear that every
constituent polarization in the gain medium contributes to the total source term in the wave
equation, Eq. (1). Strictly speaking, it is thus impossible to say that one portion of the electric
field is driven by only a single transition if multiple transitions are present in the gain medium,
though practically there are many cases where these transitions are so well separated in fre-
quency that this is effectively the case. Each constituent polarization, from Eq. (7), obeys its
own equation of motion,

∂tp+
j (x, t) =−(γ⊥, j + iωa, j

)
p+

j −
id j

h̄
(θθθ j ·E)θθθ ∗

j , (10)

in which the properties of the jth constituent polarization are given in terms of the dephasing

rate, γ⊥, j, the atomic transition frequency, ωa, j, the constituent inversion, d j = N(x)(ρ( j)
nn −

ρ( j)
mm), and the dipole matrix element, θθθ j.
The equation of motion for the density matrix, Eq. (6), also determines the evolution of the

populations in each atomic level, given by the diagonal elements of the density matrix,

∂tρnn =− i
h̄

M

∑
k

(θθθ nkρkn −ρnkθθθ kn) ·E(x, t). (11)

As can be seen here, atomic level populations couple only to the constituent polarizations with
which they share a transition, and atomic levels which are not a part of any lasing transition
do not appear at this stage on the right hand side of the equation for the populations. However
typically all levels are coupled non-radiatively through other degrees of freedom (“the bath”)
and these effects need to be included phenomenologically in the standard manner, leading to

∂tρn =
M

∑
m�=n

γnmρm −
M

∑
m�=n

γmnρn − 1
ih̄

NT

∑
j

ξn, j

(
p−

j −p+
j

)
·E. (12)

Here γnm represents either the non-radiative decay rate between a higher level m and a lower
level n or pumping rate from lower level m to higher level n, ρn ≡ N(x)ρnn is the total number
of electrons in level n of atoms at location x. ξn, j represents the relationship between the popu-
lation of level, n and a given lasing transition, j; ξn, j = 1 if n is the upper level of the transition,
ξn, j =−1 if n is the lower level of the transition, and ξn, j = 0 if n is not involved in that lasing
transition.

Thus the full set of semiclassical lasing equations are Eqs. (1), (8), (10), and (12), which
define the wave equation for the electric field, the total polarization in terms of the constituent
polarizations, the equation of motion for each constituent polarization, and the equation of
motion for the populations in each atomic level respectively. Since now the time evolution of
the off-diagonal elements of the density matrix are contained in the polarization equations, we
will henceforth represent the populations (diagonal elements) in terms of a density vector with
components ρn(x).
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3. Solving the semiclassical lasing equations

3.1. Two-level gain medium

In the limit of a two-level gain medium with only a single lasing transition, Eqs. (8), (10), and
(12) are simplified to

∂tP+
g (x, t) =− (γ⊥+ iωa)P+

g − iN(x)d
h̄

(θθθ ·E)θθθ ∗ (13)

∂td(x, t) =− γ‖(d−d0(x))− 2
ih̄

(
P−

g −P+
g

) ·E (14)

where γ‖ = (γ12 + γ21) is the relaxation rate of the inversion and

d0(x) =
(

γ21 − γ12

γ21 + γ12

)
N(x) (15)

is the inversion in the absence of an electric field. These equations, Eqs. (13) and (14), along
with the wave equation, Eq. (1), comprise the Maxwell-Bloch equations, the most basic version
of semiclassical laser theory. As noted above, it is these equations which are solved directly for
the steady-state properties using SALT. For single mode lasing the SALT solution is essentially
exact; for multimode lasing it requires the stationary inversion approximation (SIA), ∂td = 0.
This approximation holds if the multimode beating terms which drive time-dependence of the
populations are negligible.

The stationary inversion approximation (SIA), requires two conditions to be valid. First, that
the relaxation rate of the inversion, γ‖, be small compared to the modal spacing, Δ, and the
dephasing rate of the polarization, γ‖ 	 Δ,γ⊥. This condition is usually met for microlasers,
for example a Fabry-Perot laser cavity typically requires L ≤ 100μm for Δ � γ‖ [34]. The
second condition is that the mode spacing must be well separated from the relaxation oscillation
frequency, so as to avoid resonantly driving relaxation fluctuations which could destabilize the
multimode solution. The relaxation oscillation frequency is ωr ∼ √κγ‖ [35], where κ is the
field decay rate of the cavity. For microcavities, κ ≤ Δ, so ωr ≤

√
Δγ‖ < Δ. As such, the SIA

will hold and the multimode solution found by SALT will be correct when γ‖ 	 Δ,γ⊥ [36].
Essentially the same conditions will be required for C-SALT to describe multimode lasing,
although, as for SALT, C-SALT solutions should be accurate in general for the single-mode
case.

Continuing our brief review of SALT, we now simplify our analysis by treating slab or two-
dimensional geometries for which the electric fields in the transverse magnetic (TM) modes,
can be taken to be a scalar, E → E), noting that the treatment discussed here is still completely
applicable in geometries for which the fields must be treated as vectors [20]. Having done so,
we make a multimode ansatz, stating that the electric field and polarization can be broken up
into NL components with distinct frequencies representing each lasing mode,

E+(x, t) =
NL

∑
μ

Ψμ(x)e
−iωμ t (16)

P+
g (x, t) =

NL

∑
μ

pμ(x)e
−iωμ t (17)

where the plus superscript denotes the positive frequency component of the field, E = 2Re[E+],
and Ψμ(x) and pμ(x) are the spatial profiles of the electric field and corresponding polarization
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of the lasing mode with frequency ωμ . The multimode ansatz allows us to match frequency
components of the electric and polarization fields through Eq. (13),

pμ =
|θ |2
h̄

d
ωμ −ωa + iγ⊥

Ψμ . (18)

Upon inserting this definition into Eqs. (14) and (1) and making the rotating wave approxima-
tion (RWA), which is well satisfied for all lasers of interest, one recovers the coupled set of
SALT equations. As noted above, these take the form of a set of wave equations, one for each
lasing mode of the cavity, which are coupled through the non-linear hole-burning interaction in
the gain medium [16,17, 19],

0 =
[
∇2 +

(
εc(x)+4πχg(x,ωμ)

)
k2

μ
]

Ψμ(x), (19)

χg(x,ω) =
|θ |2
h̄

d0(x)
ω −ωa + iγ⊥

⎛
⎜⎝ 1

1+ 4|θ |2
h̄2γ‖γ⊥

∑NL
ν Γν |Ψν |2

⎞
⎟⎠ , (20)

where Γν = γ2
⊥/(γ

2
⊥+(ων −ωa)

2) is the Lorentzian gain curve evaluated at ων .
To solve the SALT equations, Eqs. (19) and (20), simultaneously, each of the lasing modes

is expanded over a basis,

Ψμ(x) = ∑
n

a(μ)n fn(x;ωμ) (21)

where the basis functions fn are fixed, (but possibly dependent upon the lasing frequency ωμ ),
and the expansion coefficients an are found via a non-linear solution algorithm. There are at
least two useful choices for the basis set. The first, and most developed to this point, is to use
a basis set of purely outgoing non-hermitian states which are termed the Constant Flux (CF)
states [16, 19, 37]. More recently it has been shown that one can simply use a position space
basis [20] combined with a perfectly matched layer (PML) to implement the outgoing boundary
condition. We will not go into the details of these computational approaches here as either can
be used with the C-SALT equations which are our main focus. Instead we refer the interested
reader to the cited references; the computations presented here are based on the CF approach.

SALT assumes only a single lasing transition, and the above equations are then typically
presented in natural, scaled units for electric field and inversion, Ec = 2|θ |/(h̄√γ⊥γ‖), and dc =

4π|θ |2/(h̄γ⊥), that involve the relaxation rates associated with that transition. With multiple
transitions with differing relaxation rates, all contributing to the lasing lines, there will be no
such natural scaling for C-SALT. As noted above, previous work has shown that the steady-
state equations for N-level lasing with a single transition can be exactly mapped onto the SALT
equations with renormalized relaxation parameters, so that computationally the N-level case is
negligibly different from the two-level Maxwell-Bloch case [31].

3.2. Multiple lasing transitions

When multiple lasing transitions are present, the multimode ansatz is expanded to include con-
stituent polarizations,

p+j (x, t) =
NL

∑
μ

p j,μ(x)e
−iωμ t (22)

which still allows one to match frequency components for each constituent polarization using
Eq. (10) to find

p j,μ =
|θ j|2

h̄

d j

ωμ −ωa, j + iγ⊥, j
Ψμ . (23)
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To derive the C-SALT equations, this solution for the constituent polarization is inserted into
the equation of motion for the atomic levels, Eq. (12), and the RWA is again made, resulting in

∂tρn =
M

∑
m�=n

γnmρm −
M

∑
m�=n

γmnρn −
NT

∑
j

2|θ j|2ξn, jd j

h̄2γ⊥, j

(
∑
ν ,μ

Γν , jΨ∗
ν Ψμe−i(ωμ−ων )t

)
. (24)

To proceed, we first rewrite this equation in terms of a M ×M population density vector at
each position in the cavity, ρρρ(x), whose components are the atomic level populations ρn(x).
Additionally, we make a slightly stronger version of the SIA, the stationary population approx-
imation (SPA), which states that the beating between different lasing modes does not lead to
significant time-dependence in the level populations, so ∂tρρρ ≈ 0. While a more detailed dis-
cussion of SPA will be given in section 5, it is worth noting here that it is valid for most laser
systems of interest, i.e. those with fast decays into and out of the lasing levels, while the upper
lasing level of each transition is metastable and thus long lived. These fast relaxation rates need
not be small compared to Δ and γ⊥, only the relaxation rates of the metastable upper lasing
transitions need be slow in this sense, a condition which is numerically tested and confirmed
by the FDTD simulations below.

Thus, the above equation can be rewritten as

0 = Rρρρ +
NT

∑
j

2|θ j|2
h̄2γ⊥, j

(
∑
ν

Γν , j|Ψν |2
)

Ξ jρρρ, (25)

where R is a matrix containing information about the pump and decay rates, and Ξ j is a matrix
containing information about which level populations are coupled to the partial polarizations
and constitute the jth lasing transition. The full forms of these matrices are given in Appendix
A.

Equation (25) is a homogeneous equation satisfied by the “vector” of atomic populations
at each point in space. It requires knowledge of the lasing modes to be solved and hence will
need to be solved simultaneously with the electric field equations. In addition, in the absence of
gain diffusion, the total number of gain atoms at each point in space, N(x), is externally fixed,
and is a given of the problem. Hence the homogeneous Eq. (25) is to be solved subject to the
normalization condition

M

∑
n

ρn(x) = N(x), (26)

which uniquely determines the level population vector.
It is convenient to incorporate this normalization condition directly into Eq. (25) by defining

a matrix B and an M-component total number vector N(x) such that

Bρρρ = N(x), (27)

where neither the matrix B, nor the vector N(x) are uniquely defined, but must be chosen to
represent Eq. (26). The normalization can then be inserted into Eq. (25), resulting in

ρρρ =

[
R+B+

NT

∑
j

2|θ j|2
h̄2γ⊥, j

(
NL

∑
ν

Γν , j|Ψν |2
)

Ξ j

]−1

N(x). (28)

To incorporate multiple lasing transitions into the SALT formalism to recover the C-SALT
equations, all that must be altered is the equation for the electric susceptibility, Eq. (20), not the
wave equation itself. Using Eq. (23), the electric susceptibility can be written as

χg(x,ω) =
1
h̄

NT

∑
j

|θ j|2d j

ω −ωa, j + iγ⊥, j
, (29)
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where d j ≡ ρ( j)
n −ρ( j)

m is determined from Eq. (28). The main difference here is now the atomic
population densities cannot be directly inserted into the wave equation through the use of a
scalar inversion equation. Instead we must simultaneously solve the wave equation, Eq. (19),
and the population equation, Eq. (28). Using a non-linear iteration algorithm to solve the prob-
lem numerically, one inserts an initial guess for the field profiles, {Ψμ(x)}, and uses these to
solve for the full spatial profile of the atomic population densities. This result for the population
densities generates a guess for the susceptibility, which can be inserted into the wave equation
and iterated back and forth to self-consistency.

There is one other important difference between Eqs. (20) and (29) in the case of a “partially
pumped” laser, in which pumping is applied to only a subset of the regions containing gain
media [22–26]. One needs to distinguish physically between two situations: 1) Having a (given)
spatial density of gain atoms, which can be non-uniform, and hence will lead to non-uniform
but always positive gain under conditions of uniform spatial pumping. This is taken into account
from the specification of N(x) under the assumed conditions of spatially uniform pumping. 2)
Spatial non-uniform pumping “partial pumping” in which there is a uniform distribution of
gain atoms, which are not equally pumped. This would appear in our formalism as a variation
with spatial position of the pumping rate parameters in the R matrix of Eq. (28). In this case
non-pumped regions would act as absorbers for laser light, which would automatically be taken
into account in terms of a spatial variation in the susceptibility function, χg(x), which would
now have an absorbing form in those unpumped regions.

3.3. Gain diffusion

The formalism developed in Section 3.2 can be extended to include gain diffusion, a phe-
nomenon found in many types of gain media. A term representing this effect can be added
to Eq. (24), resulting in

∂tρn =
M

∑
m�=n

γnmρm −
M

∑
m�=n

γmnρn +Dn∇2ρn −
NT

∑
j

2|θ j|2ξn, jd j

h̄2γ⊥, j

(
∑
ν ,μ

Γν , jΨ∗
ν Ψμe−i(ωμ−ων )t

)
,

(30)
where Dn is the longitudinal diffusion coefficient for the atomic level |n〉. Despite the similari-
ties of Eqs. (24) and (30), there is one important difference, namely that the atomic populations
at each spatial location are now coupled together. Thus, when diffusion is present, the popula-
tion density vector ρρρ is an M×P dimensional vector whose components are atomic populations
at each of P discretized spatial locations. The stationary population approximation can still be
made, resulting in a generalized homogeneous equation for the population density vector,

0 =
(
R+D∇2)ρρρ +

NT

∑
j

2|θ j|2
h̄2γ⊥, j

(
NL

∑
ν

Γν , j|Ψν |2
)

Ξ jρρρ , (31)

where D is the matrix of longitudinal diffusion coefficients at each spatial location, and the other
two matrices R, and Ξ have also now been similarly expanded over the position basis as well.
To correctly normalize Eq. (31), we note that one consequence of SPA is ∂t ∑n ρn = 0, and when
performing this sum on Eq. (30), one finds that the total population density is homogeneous in
the steady state in the presence of diffusion,

0 = ∇2

(
M

∑
n

Dnρn

)
. (32)
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Furthermore, the walls of the cavity prevent any flux of gain atoms across its borders, which is
represented by the Neumann boundary condition

∂xρn|x=0,L = 0. (33)

This, together with Eq. (32), yields the normalization

M

∑
n

ρn(x) = N. (34)

This is a simple restatement of the fact that a diffusive gain medium in a passive cavity will be
evenly distributed in the steady state, unlike a non-diffusive gain medium where the density of
gain atoms can fluctuate depending on their distribution.

Note however, that while the diffusion condition implies that the number of “atoms” will
be uniform in space, their excitation distribution will not be. Spatial hole-burning due to the
spatial variation of the lasing modes above threshold will lead to a non-uniform gain even in
the presence of uniform pumping and diffusion, and this effect is still captured by the theory.
We will see below that these two effects compete; as the diffusion coefficient of the medium is
increased, the excitation distribution will become more uniform in steady-state, counteracting
the effects of spatial hole-burning.

Again, the normalization requirement can now be expressed as

Bρρρ = N, (35)

where the matrix B and vector N are likewise expanded over the spatial basis. Inserting Eq. (35)
into Eq. (31) yields the generalized level population equation

ρρρ =

[
R+D∇2 +B+

NT

∑
j

2|θ j|2
h̄2γ⊥, j

(
NL

∑
ν

Γν , j|Ψν |2
)

Ξ j

]−1

N(x). (36)

The solution now proceeds in the same way as in Section 3.2. Knowing the atomic level pop-
ulations ρρρ , we can use Eq. (29) to solve for the susceptibility, which is then inserted into the
wave equation, Eq. (19). The problem thus reduces to a set of differential equations, one per
lasing mode, coupled through the generalized level population equation, Eq. (36). The latter is
now a much bigger matrix equation, MP×MP, as opposed to M×M, increasing the computa-
tional cost, but still keeping it within a manageable range, even for two-dimensional lasers (see
below).

These two generalizations, Eqs. (28) and (36), along with their coupling to SALT, Eqs. (29)
and (19), are the main results of this paper. They extend the capabilities of SALT to cover many
types of gain media, including newly-developed ones [5, 10]. C-SALT can thus be used as an
efficient tool for the design and study of devices in which gain diffusion is present alongside
spatial hole-burning, a regime which is challenging for traditional numerical methods to handle
[7, 8, 14, 15].

4. Results

To perform a well controlled test of the stationary population approximation in C-SALT, for
the case of multiple transitions without diffusion, we studied 1D microcavity lasers for which
FDTD simulations (without diffusion) are tractable. We used a FDTD scheme similar to the
one proposed by Bidégaray [38], altered to include multiple lasing transitions and additional
atomic populations. The simulations were run for a total duration at least 40 times greater than
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Fig. 1. Plot of modal intensities as a function of pump strength for a cavity with n = 1.5
and a gain medium consisting of atoms with two different atomic transitions, ωa,1 = 40,
γ⊥,1 = 4, θ1 = .1, ωa,2 = 38, γ⊥,2 = 3, θ2 = .1, and 6 atomic levels in total, with decay
rates as indicated in the schematic. Results from C-SALT using the stationary population
approximation are shown as straight lines, results from FDTD simulations are shown as
triangles. The different colors indicate different lasing modes. Inset shows the modal fre-
quencies and their intensities at P = .0035. All values are reported in units of c/L.

the longest time scale in the model, to ensure a steady state was reached. FDTD simulations of
Maxwell’s equations coupled to atomic populations and polarizations do not make the steady-
state assumption used in C-SALT, thus observing a stable output in FDTD serves as a test of
the SPA used in C-SALT. The simulated laser cavity consists of a dielectric slab of background
refractive index n = 1.5, with a perfectly-reflecting mirror on one side and an interface with
air on the other. Distributed uniformly within the slab is a six-level gain medium, with two
atomic transitions of slightly different frequencies and widths. For these set of simulations,
the diffusion constant was set to zero in the C-SALT equations. The gain linewidths of the
transitions overlap, as shown in the inset of Fig. 1, so each lasing mode receives significant gain
contributions from both transitions. As shown in Fig. 1, excellent agreement is seen between
C-SALT and FDTD simulations, both in predictions of modal intensity and frequency, thus
quantitatively verifying the use of SPA. In these simulations, only the relaxation rates of the
metastable upper lasing levels are small compared to Δ and γ⊥, j; the relaxation rates of other
atomic levels are of the same order. This provides evidence for our earlier claim that the only
rates which must be small when compared to Δ and γ⊥, j are those of the metastable upper lasing
state.

We now move to the case of lasers with multimode lasing and gain diffusion, for which
FDTD is a very challenging computational effort, but which are relatively tractable using the C-
SALT approach. In Fig. 2, we demonstrate how gain diffusion affects the transition from gain-
clamped single-mode lasing (which can be described by the simplest form of laser theory [32])
to multimode lasing (which is possible as a result of spatial hole-burning). The left panel of
Fig. 2 shows C-SALT simulations for a two level atomic medium with three different values
for the diffusion coefficient. The solid lines show the modal intensities of the medium without
diffusion, and dotted and dot-dashed lines of the same color show the evolution of the modal
intensities as the diffusion coefficient is increased. We observe, as expected, that increasing
the diffusion coefficient postpones the transition from single-mode to multimode operation, by
increasing the threshold of the second and higher-order lasing modes. In fact, for the largest
diffusion coefficient the third lasing mode does not reach threshold within the pump values that
were simulated. The right panel of Fig. 2 shows the inversion of the gain medium inside the
cavity as a function of position within the cavity for a given pump value, d0 = 0.345, a point
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Fig. 2. (Left panel) Plot of the modal intensities calculated using C-SALT as a function of
pump strength for a dielectric slab cavity, n = 1.5, and a two level, single transition atomic
gain medium, with ωa = 40 and γ⊥ = 4, values again in units of c/L. Simulations for three
different diffusion strengths are shown in solid, dashed, and dot-dashed lines. Different
colors correspond to different lasing modes within each simulation. (Right panel) Plot of
the inversion in the cavity as a function of position in the cavity at a pump strength of
d0 = 0.345. Darker colors indicate increasing values of the diffusion coefficient. Schematic
shows a one-sided dielectric slab cavity containing a two level atomic medium subject to
uniform pumping.

at which all three simulations have exactly two lasing modes on. The faster the diffusion, the
more uniform is the inversion in the presence of lasing. Darker colors indicate increasing values
of the diffusion coefficient.

The results in Fig. 2 make intuitive sense: an increased diffusion coefficient spatially
“smooths out” the population inversion of the first lasing mode; this supplies the first mode
with more gain, acting against the effects of spatial hole-burning. Specifically, the right panel
of Fig. 2 shows that increasing the diffusion coefficient flattens the inversion close to the cavity
mirror, where the lasing modes spatially overlap. Near the end facet of the cavity, the gain is
already being used fairly uniformly, so the effects of diffusion are substantially reduced. These
results can also be understood quantitatively by writing down a steady-state, effective inversion
equation for an atomic gain medium, d, which can be done as there is only a single lasing
transition [31],

0 = ∂td =−γ‖(d−d0(x))+D∇2d− 4|θ |2
h̄γ⊥

NL

∑
ν

Γν |Eν |2d, (37)

where d0(x) is the equilibrium value of the inversion density in the absence of both fields inside
the cavity and diffusion. The final term on the right hand side can be identified as the rate of
stimulated emission,

γSE(I) =
4|θ |2
h̄γ⊥

NL

∑
ν

Γν |Eν |2, (38)

which is spatially dependent and proportional to the intensity of the local electric field. Using
the SPA, Eq. (37) can be solved for the inversion density, as

d(x) =

[
1+

γSE(I)
γ‖

− D
γ‖

∇2
]−1

d0(x). (39)

Thus, for diffusion to be germane to the system,

k2
DD
γ‖

� 1+
γSE(I)

γ‖
, (40)
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Fig. 3. (Left panel) Plot of the modal intensities calculated using SALT as a function of
pump strength for a partially pumped dielectric slab cavity, n = 1.5, containing a four level,
single transition atomic gain medium. Simulations of four different values of diffusion are
shown as solid, dotted, dot-dashed, and dashed lines. The first lasing mode to turn on in all
of the simulations is shown in red, and the second lasing mode, which only turns on in two
of the simulations, in blue. (Right panel) Plot of the inversion in the cavity as a function
of position in the cavity at a pump strength of d0 = 0.37. Darker colors indicate increasing
values of the diffusion coefficient. Schematic shows a partially pumped one-sided dielectric
slab cavity containing a four level atomic medium with a single lasing transition.

where kD is the wavevector associated with the scale of the inhomogeneity in the inversion. If
the inversion is less than this, the gain atoms are unable to move very far before they either non-
radiatively decay or undergo stimulated emission, preventing the diffusion from washing out
the effects of the spatial inhomogeneity in the inversion. For spatial hole-burning, this variation
in the inversion is on the order of the atomic transition wavelength, kD = 2ka, as the inversion
oscillates twice as fast as the electric field [4]. This prediction is consistent with the numerical
results shown in Fig. 2, where the onset of strong diffusion suppresses multimode operation
and leads to gain clamped behavior.

For partially pumped cavities [22–26], there is, in addition to the scale associated with
smoothing out spatial hole-burning, another relevant scale for measuring the strength of dif-
fusion. This is the scale at which the diffusion begins to overcome the spatially inhomogeneous
pumping, an inhomogeneity on the scale of the entire cavity length. Quantitatively, this can still
be understood from Eq. (40), except that now kD = 2π/L, where L is the length of the cavity,
and we are assuming that the variation of the pumping is on the scale of the entire cavity. This
leads to the criterion that when 4π2D/L2 > γ‖+γSE(I) diffusion will strongly reduce the effects
of non-uniform pumping by allowing the inversion to penetrate into the non-pumped regions.

Both types of diffusion-induced transitions are demonstrated in Fig. 3, which shows the re-
sults of C-SALT simulations of a four-level gain medium with a single transition, which is only
pumped in half the cavity. A two-level medium would not be suitable for this test as it would
have strong absorption in the unpumped region. As the diffusion coefficient is increased, the
first transition from the spatial hole-burning regime to the spatially-averaged gain saturation
regime is observed, as well as the effects of gain clamping which increases the second lasing
threshold. In this regime, the inversion does not penetrate into the unpumped region. However,
as the diffusion coefficient is further increased, the inverted atoms are able to penetrate further
into the unpumped region. For this example, the effective spatial scale of the partial pump-
ing is the length of the cavity, L, by choice. As expected, we observe this second transition
when 4π2D/L2γ‖ ∼ 1+ γSE(I)/γ‖. Once the first transition has occurred the gain is sufficiently
clamped, even though it is not uniform over the entire cavity, and we only find single mode
lasing. If one intentionally pumps non-uniformly on a smaller scale than L, that would decrease
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Fig. 4. Plot of the non-interacting modal thresholds as a function of the diffusion coeffi-
cient in a quadrupole cavity with ε = 0.16, r0 = 3.45μm, ka = 6.27μm−1, γ⊥ = .19μm−1,
n = 3+ .004i. Only the three modes that become the threshold lasing mode for different
values of the diffusion are plotted. Left schematic within the plot shows the boundary of
the simulated region, black circle, boundary of the cavity, blue quadrupole, and applied
pump profile, red circle. The right schematic within the plot depicts the four level gain
medium that fills the entire quadrupole cavity. Markers in the plot correspond to the thresh-
old lasing mode and corresponding inversion profile accounting for the effects of diffusion
at their locations. The threshold lasing mode profile and inversion profile are shown as false
color plots, with red corresponding to large values, and blue corresponding to small values,
with the specific values corresponding to each color indicated next to each plot. The white
boundary in the plots denotes the cavity boundary.

the diffusion coefficient needed for the second transition until in the case of wavelength scale
non-uniform pumping the two transitions would coincide roughly.

To demonstrate the scalability of C-SALT to multiple dimensions we ran 2D TM simulations
of quadrupole-shaped dielectric cavities, whose boundary is defined by the equation r(θ) =
r0(1+ ε cos(2θ)), where ε represents the degree of deformation from a circular cavity. Such
cavities have been extensively studied in the context of wave chaos theory and experiments
[37, 39, 40]. It was found that the spatial profile of the first lasing mode depends upon both the
deformation and the pumping profile [37, 39, 40]. Here we show in Fig. 4 that for a quadrupole
cavity with ε = 0.16 which is being partially pumped in the middle of the cavity, the spatial
profile of the threshold lasing mode changes with the strength of the carrier diffusion in the
system. When the diffusion strength is too weak to overcome the partial pumping of the cavity,
the first threshold mode is found to have strong angular dependence in its far-field intensity
output and heavily overlap the center of the cavity where the gain medium is inverted. As the
diffusion coefficient is increased, the threshold lasing mode changes to become one that lives
closer to the edge of the cavity, increasing its lifetime. Finally, when the gain becomes nearly
uniform due to diffusion, we find that the threshold lasing mode is a whispering gallery mode.

5. Discussion of SPA

In the derivation of the population equation given above, Eq. (28), we took as an assumption
that the beating terms from the coupling of different mode amplitudes averaged to zero and
thus could be neglected. In this section we will make explicit this approximation. Similar to
the discussion for a two-level gain medium in section 3.1, there are two criteria that go into the
SPA: the populations do not acquire beating terms in the presence of multiple lasing modes, and
that relaxation oscillations are not resonantly enhanced by being driven at the beat frequency.
As discussed above, for a two level medium, the former criterion requires that γ‖ 	 Δ,γ⊥, and
the later requirement that ωr ∼√κγ‖ < Δ. The main difficulty encountered when generalizing
these equations in the presence of multiple transitions is the absence of an explicit formula
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for an effective γ‖ parameter entering these inequalities. However, the example of the N-level
single transition case [31], for which we have such an explicit formula, strongly suggests if
all of the {γlu} are small in the relevant sense, (where {γlu} is the set of non-radiative decay
rates from the upper lasing level to the lower lasing level of each lasing transition) then the
SPA will hold. Thus, since κ ≤ Δ (they are comparable for most of the lasers studied here), as

long as
√

Δ >
√

γ j
lu,∀ j, we expect that the SPA will be satisfied. This is consistent with our

FDTD simulation results, where a steady-state output was observed without any assumption of
stationary behavior, as noted above in the discussion of Fig. 1.

In the limit of small violations of the SPA, it is possible to correct perturbatively for the
effects of the beating populations within a generalized SALT framework. This calculation is
discussed in Appendix B.

6. Semi-SALT: a free-carrier model

A natural extension of the discussion on atomic gain media with multiple transitions is to a treat-
ment of bulk semiconductor gain media, in which there is a continuum of available transitions
for the electrons between the conduction and valence bands. In doing so, we must also consider
Pauli exclusion and Fermi-Dirac statistics. The polarization-Bloch equation for semiconduc-
tor media was originally derived by Lindberg and Koch, who took into account many-body
effects [41],

(h̄ω −Δεq + ih̄γq)ρcv,q(r,ω) = ( fc,q(r)− fv,q(r))
[
θqE(r,ω)+

1
V ∑

q′
Vs(q−q′)ρcv,q′(r,ω)

]
,

(41)
in which ρcv,q is the off-diagonal density matrix element between the conduction and valence
bands at electron momentum q, θq is the dipole matrix element for the transition at q, Δεq is the
re-normalized energy difference between the conduction and valence states, γq is the dephasing
rate, and Vs is the Coulomb interaction. Note that the inversion term is the simplification of
fc(1− fv)− fv(1− fc), the probability that a conduction state is filled and the relevant valence
state is open minus the probability that a valence state is filled and the conduction state is open.
The macroscopic polarization field in Maxwell’s equations is then given by [1]

P(r,ω) =
1
V ∑

q
θqρcv,q(r,ω). (42)

To proceed we will make the free-carrier approximation, setting Vs = 0, with full under-
standing that Coulomb repulsion is an important effect in semiconductor lasers, and thus that
the results found here are just the first step towards a more complete theory. Doing so allows
one to write down the free-carrier susceptibility,

χ(r,ω) =
∫

d3q
2

(2π)3 |θ |2q
fc,q(r;φ , |E|)− fv,q(r;φ , |E|)

h̄ω −Δεq + ih̄γq
, (43)

where the factor of two appearing in the numerator accounts for spin degeneracy. The factors
of fc,q and fv,q are simply the occupation probabilities for finding an electron at momentum
q in the conduction and valence bands respectively and depend both upon the applied electric
potential, φ , as well as the magnitude of the electric field within the cavity. The inversion
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equations, taking into account Fermi-Dirac statistics, take the form:

∂tDq(r) =− γ‖,q(Dq(r)−D(0)
q )− 2

ih̄
((Eθ ∗

q ρcv,q)
∗ − c.c.) (44)

Dq(r) = fc,q(r)− fv,q(r) (45)

D(0)
q = f (0)c,q − f (0)v,q

=
1

eβ (εc,q−μ−eφ) +1
− 1

eβ (εv,q−μ+eφ) +1
, (46)

where γ‖,q is the non-radiative interband relaxation rate between the conduction and valence

bands at momentum state q, and f (0)c,q is the Fermi function for the conduction band at momen-
tum q in which we have introduced the electro-chemical potential μ + eφ . In this theory the
applied voltage φ , related to the injected current, will play the role of the pump. In writing such
a simple inversion equation we are neglecting intraband transitions, which is why a population
equation similar to Eq. (28) is not needed here.

Next, we expand E(r, t) and ρcv,q(r, t) as a summation of distinct lasing modes with different
spatial profiles in the same manner as done previously in Eqs. (16) and (17). Using the above
equations, we again assume stationary inversion of all of the constituent transitions ∂tDq(r) = 0,
assuming that the modal beating terms in the product Eρ∗

cv,q are negligible, so that we can solve
for the susceptibility and insert it into Maxwell’s wave equation, resulting in the Semi-SALT
equations:

[∇2 +(εc +4πχg(r,ω))k2
μ ]Ψμ = 0 (47)

χg(r,ω) =

∫
d3q

2
(2π)3 |θq|2 f (0)c,q − f (0)v,q

h̄ω −Δεq + ih̄γq

⎛
⎝ 1

1+ 4|θq|2
γ‖h̄ ∑ν Γν ,q|Ψν(r)|2

⎞
⎠ (48)

where

Γν ,q =
h̄γq

(h̄ων −Δεq)2 + h̄2γ2
q

(49)

is the Lorentzian linewidth.
In general, Semi-SALT is able to treat both direct and indirect band gap materials, so long as

the energy difference between the conduction and valence bands, Δεq, is specified. To continue
to analytically treat the Semi-SALT equations here we will now assume that we are modeling a
direct band gap semiconductor laser where the renormalized energy gap can be written as

Δεq =
h̄2q2

2mr
+Eg (50)

in which mr is the reduced mass and Eg is the energy gap when q = 0. If we take both γq and
θq to be independent of q, we find that the integral defining the real part of χ is divergent, as

both the numerator and the denominator ∝ q4, and for large q, D(0)
q → −1. This is a known

problem [2], which stems from the fact that the Lorentzian line-shape of the dipole transition
is too broad and that other many-body effects truncate the line-shape. However, within the
assumptions already used in this treatment the integral can be regularized by incorporating the
correct q dependence in to θq [2],

θq =
θ0

1+ h̄2q2

2mr

1
Eg

(51)
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in which
θ0 = 〈λ ′|p̂|λ 〉 (52)

and where |λ 〉 represents a lattice periodic function, p̂ is the momentum operator, and as such
θ0 has no further dependence upon q. Note that even when many-body effects are considered,
γq is still relatively constant as a function of q.

Numerically solving the Semi-SALT equations is substantially more computationally de-
manding than the usual SALT [31], or C-SALT equations discussed above. The reason for this
is two-fold. First, the electric susceptibility no longer depends linearly upon the pump variable.
Instead the applied electric potential, φ , appears in the Fermi-Dirac functions defining the equi-
librium inversion of the semiconductor, yielding a nonlinear dependence in the susceptibility
on the applied potential. This has the effect of making the lasing threshold problem non-linear
in the pump variable and thus increasing the computational difficulty, both to find the first las-
ing threshold, and to find subsequent laser thresholds for additional modes. Second, the integral
over q must be performed at each spatial location, another computationally expensive task. Both
of these difficulties can be surmounted; the details can be found in Appendix C.

Even under the limiting assumptions made above, Semi-SALT is able to predict two features
unique to semiconductor lasers, as seen in Fig. 5. Unlike the atomic gain media discussed above,
the gain curve of a semiconductor gain media is in homogeneously broadened and asymmetric
due to the continuum of transitions available above the energy gap. As such, we expect that the
thresholds of lasing modes with frequencies above the energy gap will experience more gain
and thus have lower thresholds, an effect clearly seen in the left panel of Fig. 5. The frequencies
of semiconductor laser modes are also expected to shift away from the energy gap as the pump
is increased due to Pauli blocking, additional electrons excited across the band gap from the
increasing the applied electric potential must find higher energy states to transition to, yielding
more energetic stimulated emission transitions. This effect is clearly predicted by Semi-SALT,
as shown in the right panel of Fig. 5.

In general, quantitative computational study of semiconductor lasers is very challenging and
is only feasible with supercomputers and specialized codes. We hope that incorporating the
steady-state ansatz and the SIA into the electromagnetic part of the calculation, as is done in
Semi-SALT, could eventually lead to more efficient computational approaches to parts of this
problem.

7. Summary

We believe that the C-SALT equations derived here are the most general and accurate form
of the steady-state semiclassical lasing equations, assuming only stationary populations and
neglect of atomic and multi-level coherences, as is typically valid for most lasers of inter-
est. As we have shown, these equations include both the effects of multiple lasing transi-
tions and of gain diffusion and are computationally tractable, even in more than one di-
mension. This will allow efficient simulation and modeling of a number of new laser sys-
tems with these features. The ability to model gain diffusion revealed two relevant scales for
the diffusion constant. Spatial hole burning disappears and single mode lasing (gain clamp-
ing) sets in when 4k2

aD ∼ γ‖ + γSE(I). This could be demonstrated because C-SALT treats
the above threshold gain competition exactly. Non-uniform pumping effects disappear when
4π2D/L2 ∼ γ‖+ γSE(I), where L is the typical scale of the non-uniformity in the pump profile.
Comparisons with experiment can be used to extract information about the relevant diffusion
constant(s). Finally, a free-carrier version of SALT, semi-SALT, was derived which fully incor-
porates Fermi-Dirac statistics, showing the effect of Pauli blocking. It is hoped that further work
along these lines will incorporate many-body effects leading to advances in semiconductor laser
modeling.
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Fig. 5. (Left panel) Plot of the lasing thresholds for each of the non-interacting modes in
the cavity as a function of the applied electric potential, φ , for a single sided, slab semicon-
ductor laser. The energy gap at q = 0 has been set to Eg = 40, and the chemical potential
set at half that, μ = 20. The non-interacting thresholds of the two modes studied in the
right panel are given the same colors as appear in the right panel. (Right panel) Plot of
the frequencies of the two lasing modes as a function of the applied electric potential. The
frequency for the second lasing mode (red) is only shown after it reaches threshold.

A. Matrix definitions

The rate matrix, R(x), is an M ×M matrix where M is the number of atomic levels, and can
be spatially dependent when partial pumping is applied to the cavity. In Eq. (25), R can be
calculated explicitly as

Rnn(x) =−∑
m

γmn(x) (53)

Rnm(x) =γnm(x), (n �= m) (54)

where in most cases the non-radiative decay rates γnm are a property of the atomic medium, and
hence are not spatially dependent. The coupling matrices Ξ j also have size M×M in Eq. (25),
and are defined as

Ξ( j)
uu = Ξ( j)

ll =−1 (55)

Ξ( j)
ul = Ξ( j)

lu = 1 (56)

where the indices u and l refer to the upper and lower lasing levels of the constituent polarization
j respectively.

In Eqs. (31) and (36), these matrices have size PM×PM where P is the number of discretized
spatial points in the cavity and M is the number of atomic levels. The definitions of these
matrices are then adjusted to be zero everywhere except at the location x ∈ P, and have only a
potentially non-zero block of size M×M at this location in the matrix.

B. Treatment of beating populations

We will now investigate the breakdown of the SPA when the beat frequencies are picked up in
the atomic population dynamics. Following Ge et al. [30], we assume that there are only two
lasing modes in the cavity and will only be concerned with the lowest frequency components
such as ω1 −ω2, neglecting the other side band terms that are generated such as 2ω1 −ω2 as
these will oscillate much faster. We first calculate corrections to the atomic population densities
defining

ρρρ(x, t) = ρρρs(x)+(ρρρb(x, t)+ c.c.) , (57)
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where the subscript b denotes the portion of the population density beating at the difference fre-
quency, and s denotes the steady state component. Using this to rewrite Eq. (30) and separating
out the time dependent portions we find

0 =D∇2ρρρs(x)+Rρρρs(x)+ ∑
j=1

1
ih̄

(
Ψ1 p∗1, j +Ψ2 p∗2, j − c.c.

)
ξξξ j, (58)

∂tρρρb(x, t) =D∇2ρρρb(x, t)+Rρρρb(x, t)+ ∑
j=1

1
ih̄

(
Ψ1 p∗2, j −Ψ∗

2 p1, j
)

e−i(ω1−ω2)tξξξ j, (59)

where ξξξ j is the vector form of the elements ξn, j.
As we are neglecting higher order beating frequencies, there two contributions to each atomic

polarization for the first mode, p1, j, the first from the electric field oscillating at ω1 coupled to
the stationary population terms and a second from the electric field oscillating at ω2 coupled to
the beating polarization at frequency ω1 −ω2.

p1, j =
|θ j|2γ1, j

h̄

(
Ψ1d j,s +Ψ2d j,Δ

)
, (60)

where d j,s and d j,Δ are the stationary and beating inversions associated with lasing transition j
and

γμ , j =
1

ωμ −ωa, j + iγ⊥, j
, (61)

in which the time dependence has been separated from the beating population densities, ρρρb =
ρρρΔe−i(ω1−ω2)t . To leading order the polarization of the jth transition can be written as

p(0)μ , j =
|θ j|2γμ , j

h̄
Ψμd j,s, (62)

and this is inserted into Eq. (59) to obtain

ρρρΔ =
1

−i(ω1 −ω2)

(
D∇2 +R

)
ρρρΔ +∑

j

|θ j|2
h̄2

(γ∗2, j − γ1, j

ω1 −ω2

)
Ψ1Ψ∗

2Ξ jρρρs, (63)

which can be inverted to find ρρρΔ,

ρρρΔ = M(ω1,ω2)Ψ1Ψ∗
2ρρρs, (64)

where the matrix M(ω1,ω2) = M(ω2,ω1)
∗ contains all the information about the diffusion

rates, decay rates, and field frequencies. Using this, we are able to write down the first correction
to the atomic polarizations,

p(1)1, j =
|θ j|2γμ , j

h̄
Ψ1
(
1+M(ω1,ω2)|Ψ2|2

)
d j,s. (65)

Finally, this can be inserted into Eq. (58) to calculate the corrections to the steady state pop-
ulation densities. However, it is difficult to glean any analytic insight from these equations as
there is no obvious choice of parameters to compare, with multiple atomic polarization relax-
ation rates and interlevel decay rates. Fortunately, as mentioned above, the beating population
densities are negligible in the parameter regimes studied here, namely when the upper lasing
levels of the atomic transitions are metastable and have decay rates much less than the atomic
polarization decay rates and the free spectral range.
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C. Computation of Semi-SALT

There are two main new difficulties that one encounters upon implementing Semi-SALT that are
not seen in SALT computations using atomic gain media. The first is that the lasing threshold
problem is no longer linear in the pump parameter. To find the non-interacting laser thresholds
using the TCF basis [19] one must solve the equation,

ηn(ωμ) = 4π
∫

2
(2π)3 d3q|θq|2

(
D(0)

q

h̄ωμ −Δεq + ih̄γq

)
, (66)

which cannot be reformulated as a linear eigenvalue problem. Here, ηn(ω) is the eigenvalue
being tracked across frequency space of the TCF basis equation for which we are attempting to
determine where the threshold lasing state it corresponds to reaches threshold. The TCF basis
is defined by the equations,

0 =[∇2 +(εc(x)+ηnF(x))ω2]un(x) (67)

∂xun(L) =ikun(L), (68)

where ηn is the eigenvalue for the nth solution of this equation at frequency ω , un(x) is the
eigenstate of the nth solution of the TCF equation at ω , and F(x) is the pump profile. Instead,
to find all of the laser thresholds one must use both the real and imaginary parts of this equation
to first solve for φthr where Re[η(ω)] = 4πRe[χ(ω,φthr)], and then solve for the offset in the
imaginary part of this equation,

δ = Im[η(ω)]−4πIm[χ(ω,φthr)]. (69)

By monitoring for when δ changes sign as the frequency is swept through, the lasing threshold
can be found.

The second main computational problem arises from attempting to directly solve the Semi-
SALT equations, Eqs. (47) and (48), using a non-linear solver above threshold. Such an algo-
rithm for finding the solution to the Semi-SALT equations requires evaluating the integrals over
the electron momentum at every point in space for every guess at the lasing mode amplitudes
and frequency until the non-linear solver converges, and is hopelessly inefficient. Instead, for
each iteration of the Semi-SALT equations in the pump variable above threshold this difficulty
can be sidestepped by performing a Taylor expansion on the electric susceptibility in terms of
the variables solved for at each iteration above threshold,

χ(ωN+1,�aN+1) = χ(ωN ,�aN)+
∂ χ
∂�a

∣∣∣∣
N
· (�aN+1 −�aN)+∑

ν

∂ χ
∂ων

∣∣∣∣
N
(ων ,N+1 −ων ,N) (70)

where χ(ωN ,�aN) is the self-consistent solution for the electric susceptibility for the applied
electric potential φN , and is a function of all of the different lasing frequencies present, {ωμ}
and the decomposition of the all of the lasing modes {Ψμ}, where,

Ψμ(x) =�a(μ) ·�u(x;ωμ), (71)

is the spatial decomposition of each lasing mode over the TCF basis at the correct frequency.
Using this Taylor expansion of the susceptibility, now all of the spatially dependent integrals
can be evaluated before invoking the non-linear solver, dramatically improving performance.
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