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We propose a new paradigm for realizing bound states in the continuum (BICs) by engineering the
environment of a system to control the number of available radiation channels. Using this method, we
demonstrate that a photonic crystal slab embedded in a photonic crystal environment can exhibit both
isolated points and lines of BICs in different regions of its Brillouin zone. Finally, we demonstrate that the
intersection between a line of BICs and a line of leaky resonances can yield exceptional points connected
by a bulk Fermi arc. The ability to design the environment of a system opens up a broad range of
experimental possibilities for realizing BICs in three-dimensional geometries, such as in 3D-printed
structures and the planar grain boundaries of self-assembled systems.
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Bound states in the continuum (BICs), which are
radiationless states in an open system whose frequency
resides within the band of radiative channels, have recently
attracted a great deal of interest for their applications in
producing vector beams from surface emitting lasers [1–8]
and enhancing the resolution of certain classes of sensors
[9–11]. Originally proposed in 1929 in a quantummechani-
cal context [12], BICs have now been found in a broad
range of physical systems, such as photonic crystal slabs
[13–25], waveguide arrays [26–28], strongly coupled
plasmonic-photonic systems [29], metasurfaces [30,31],
acoustics [32–37], and water waves [38–43]. Additionally,
lines of BICs were recently found in composite birefringent
structures [44,45]. In principle, BICs can be classified into
three main categories [46]: those which are engineered
using an inverse construction method, those which are
protected by symmetry or separability, and those which can
be found “accidentally” through tuning a system’s param-
eters. In practice, however, systems supporting BICs from
the first category are difficult to experimentally realize due
to the high degree of fine-tuning required. Thus, much of
the current excitement surrounding BICs has focused on
systems which feature symmetry-protected and accidental
BICs; moreover, these BICs have been shown to possess
topological protection that guarantees their existence under
perturbations to the system [20,45,47–51].
Traditionally, the appearance of accidental BICs is

understood in terms of modal interference [22,46,52], with
two or more resonances of the device destructively inter-
fering in the system’s radiation channels yielding a bound
mode spatially localized to the device. This interpretation
emphasizes how tuning the device’s parameters changes the
spatial profiles of its resonances to realize this modal
interference, while considering the available radiation
channels in the surrounding environment as fixed. This

is because most previously studied systems with accidental
BICs consider devices embedded in free space, where the
outgoing propagating channels cannot be readily altered.
However, from this argument it is clear that the environ-
ment is also important in determining the presence or
absence of BICs: the environment’s properties dictate the
number and modal profiles of the available radiation
channels, and thus strongly constrain when it is possible
to achieve the necessary modal interference. Yet thus far,
the role of the environment in creating BICs has remained
relatively unexplored.
In this Letter, we show that the properties of the

environment play an important role in determining where
BICs can exist, as much as the specific geometry of the
device embedded in this environment. This argument is
presented using coupled-mode theory (CMT) [53–55] and
as such is completely general and applicable to all systems
which exhibit BICs. As an example of this theory, we then
show that by embedding a photonic crystal slab into a
photonic crystal environment, both isolated BICs and lines
of BICs can be found in the resonance bands of the
photonic crystal slab depending on the number of available
radiation channels. Moreover, perturbations to the envi-
ronment can shift the locations of the system’s BICs even
when the photonic crystal slab layer remains unchanged,
demonstrating that the environment of a system is an equal
partner to the embedded device in determining the exist-
ence and types of BICs found in the system. Finally, we
show that when two resonance bands of the photonic
crystal slab undergo a symmetry-protected band crossing, it
is possible for a line of BICs to pass from one band to the
other through a bulk Fermi arc. Understanding the relation-
ship between the device and surrounding environment in
forming BICs is a necessary first step towards realizing
BICs in three-dimensional geometries, such as grain
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boundaries in photonic crystals [56] or self-assembled
structures [57].
To illuminate the role of the environment in determining

the presence and properties of BICs in a system, we first
consider a photonic crystal slab embedded in an environ-
ment, such that the entire system is periodic in the transverse
plane. For any choice of in-plane wave vector kk ¼ ðkx; kyÞ
and frequency ω, the outgoing field can be written as a sum
of the incoming and scattered fields Eoutðx;kÞ ¼
Einðx;kÞ þEresðx;kÞ. The incoming and outgoing fields
can be expressed in the basis of the environmental channels
Einðx;kÞ¼

P
nsin;ne

−ikz;njzjein;nðx;kÞ and Eoutðx;kÞ ¼P
n sout;ne

ikz;njzjeout;nðx;kÞ in which sin=out;n is the complex
amplitude of the channel mode ein=out;n traveling towards or
away from the photonic crystal slab with wave vector kz;n.
The field resonantly scattered by the photonic crystal
slab can be expressed in terms of the resonances (also
called quasinormal modes) of the slab Eresðx;kÞ ¼P

j ajEres;jðx;kkÞ, which satisfy radiating boundary con-
ditions in z and have complex frequencies ω̃j ¼ ωj þ iγj
[55]. Focusing now on a single isolated resonance a0 with
frequency ω̃0, from the linearity of Maxwell’s equations
these modal amplitudes can be related using CMT

−iωa0 ¼ −ðiω0 þ γ0Þa0 þ KTsin; ð1Þ
sout ¼ Csin þDa0; ð2Þ

in which C ∈ CN×N represents the direct transmission and
reflection through the photonic crystal slab,K ¼ D ∈ CN×1

gives the coupling of the resonance to the available radiation
channels for the reciprocal systems without material loss
considered here, and N is the total number of radiative
channels at ω. If the system possesses 180° rotational
symmetry about the z axis (C2), such that −kk is equivalent
to kk, by time-reversal symmetry C and D can be shown to
be related as [54]

CD� ¼ −D: ð3Þ
In the language of CMT, a BIC occurs when D ¼ 0; i.e.,

all of the outcoupling coefficients of the resonance to all of
the available radiation channels are simultaneously zero.
For this to occur accidentally with finite probability, there
must be at least as many degrees of freedom of the system
as there are unknown parameters of D. Thus, naively one
would expect to require 2N degrees of freedom to find
BICs for the N complex coefficients comprising D.
However, while the resonance outcoupling coefficients D
are dependent upon the specific patterning of the slab, the
direct scattering processes C are agnostic to this patterning
and can instead be considered using a homogeneous
dielectric slab [16,58]. As such, C is essentially constant
for perturbations to the photonic crystal slab and Eq. (3)
represents a set of additional constraints on D, halving its
number of unknown parameters. Thus, if an entire system is
C2 symmetric, one only needs N degrees of freedom to find
accidental BICs.

A second symmetry commonly present in photonic
crystal slab systems is mirror symmetry about the z ¼ 0
plane (σz). Although this symmetry is not required to find
BICs, its presence further reduces the number of unknown
parameters among the components of D as the outcoupling
coefficients dm,dn, form mirror-symmetric pairs dn ¼ σdm
with σ ¼ �1 depending on the symmetry of the resonance
about z ¼ 0 [59]. Thus, mirror symmetry both halves the
number of unknown parameters in D and also halves the
number of independent constraints represented by Eq. (3).
To provide an explicit example of how to use these

constraints to find BICs, consider the photonic crystal slab
embedded in a photonic crystal environment shown in
Fig. 1(a). The presence of the photonic crystal environment
breaks the degeneracy between the two polarizations of

(a)

(c) (d)

(b)

FIG. 1. (a) Schematic of a photonic crystal slab embedded in a
C2v symmetric photonic crystal environment of infinitely tall
dielectric rectangles (the rectangles in the environment do not
penetrate into the slab). The rectangles have length and width
lenv ¼ wenv=2 ¼ 0.23a and dielectric permittivity εenv ¼ 12,
while the slab has height hslab ¼ 0.5a, holes with radius
rslab ¼ 0.22a, and dielectric permittivity εslab ¼ 7, where a is
the lattice constant of the system. (b) Photonic band structure of
the slab resonances, ωresðkkÞ (green), and the first three low-
frequency cutoffs of the radiation channels, ωnðkkÞ (blue, purple,
and orange). (c) Quality factor of the photonic crystal slab
resonances as a function of kk calculated using MEEP [61].
Lines of BICs are seen for portions of Γ–X, Γ–Y, X–M, Y–M, and
near Γ–M, where only one environmental channel is present,
outside the dashed purple line. Here Γ ¼ ð0; 0Þ, X ¼ ð1; 0Þ,
Y ¼ ð0; 1Þ, and M ¼ ð1; 1Þ. (d) Quality factor along Γ–Y show-
ing two isolated BICs at Γ and near kk ¼ ð0; 0.2π=aÞwhere there
are two radiative channels.
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light in homogeneous media, splitting the light line ω ¼
cjkkj into separate frequency cutoff bands ωnðkkÞ, below
which the nth radiative channel does not exist [60]. As
such, for the transverse electric (TE)-like resonance band of
the photonic crystal slab shown in Fig. 1(b), the central
region of this band in the Brillouin zone [inside the dashed
purple line in Fig. 1(c)] can couple to two radiation
channels on each side of the slab, while the exterior region
of the resonance band can only couple to a single radiation
channel on each side. In other words, the photonic crystal
“cladding” can reduce the number of available radiation
channels in parts of the Brillouin zone.
First consider the single-radiation-channel region

outside the dashed purple line in Fig. 1(c). Here, there
initially appear to be 4 unknown parameters in D ¼
ðdabove; dbelowÞT . However, as the system is mirror sym-
metric about z ¼ 0 and the resonance band’s states are even
under this symmetry, D ¼ d0ð1; 1ÞT , with d0 being the
remaining complex free parameter. Moreover, one can
show that the constraint represented by Eq. (3) in this
region can be written as

d�0ðrþ tÞ ¼ −d0; ð4Þ
which amounts to a constraint on the phase of d0, as
jrj2 þ jtj2 ¼ 1, where r and t are the direct transmission
and reflection coefficients and C ¼ ðr; t; t; rÞ. Thus, in this
region there is only a single unknown parameter in D, and
as there are 2 degrees of freedom in the system, kx and ky,
lines of BICs can be found in the resonance band in the
single-radiation-channel region along portions of the edge
of the Brillouin zone, as well as near portions of the Γ–M
line, as shown in Fig. 1(c). These lines of BICs can be
viewed as 1D topological defects, similar to domain walls
in spin-flip systems, across which angleðd0Þ jumps by π
[62]. Although the CMT analysis presented here does not
guarantee D ¼ 0, a suitable choice of gauge using Eq. (4)
allows for d0 ∈ R, and in this gauge d0 changes sign across
the lines of BICs, guaranteeing D ¼ 0 [62].
In the two-radiation-channel region, one finds thatD has

two unknown parameters, and thus it is possible to find
isolated accidental BICs, similar to those found in previous
works of photonic crystal slabs embedded in homogeneous
media [18,20]. For the system shown in Fig. 1(a), there is
an accidental BIC near kk ¼ ð0; 0.2Þπ=a, and a symmetry
protected BIC at Γ where both radiative channels are even
under C2 but the resonance band is odd, as marked in
Fig. 1(c).
To demonstrate that the environment is an equal partner

to the resonant device in determining the presence of BICs,
we increase the symmetry of the photonic crystal environ-
ment (C4v as opposed to C2v) but preserve the same
photonic crystal slab, as shown in Fig. 2(a). Thus, although
the frequencies and spatial profiles of the resonances of the
photonic crystal slab remain the same, where they achieve
complete destructive interference in the radiation channels

of the new environment has changed. This shift can be seen
by comparing the distribution of BICs found in Fig. 2(c), to
the distribution seen in Fig. 1(c). In the C4v symmetric
environment, the isolated accidental BIC in the two-
radiation-channel region [of the C2v structure—see
Fig. 1(c)] has merged with the isolated BIC at Γ, similar
to the merging of BICs described by Zhen et al. [20] and
the line of accidental BICs near the Γ–M line has shifted to
lie exactly along Γ–M and become protected by mirror
symmetry about the x ¼ y line.
There is a curious feature of the lines of BICs along X–M

and Y–M found in both Figs. 1(c) and 2(c): the lines of
BICs appear to abruptly terminate prior to reaching M.
Although such a termination is not precluded by the
coupled-mode analysis previously discussed, the lines of
BICs along X–M and Y–M are not accidental but are
instead protected by symmetry, as the resonance band is
odd about the x ¼ 0 (y ¼ 0) plane along this portion of the
X–M (Y–M) high symmetry line, while the radiative
channel is even about the same plane, as shown in
Figs. 3(c) and 3(e). Thus, as the symmetry of the system
has not changed at these points along high symmetry lines,

(a)  (b)

 (c)

FIG. 2. (a) Schematic of a photonic crystal slab embedded in a
C4v symmetric photonic crystal environment of infinitely tall
dielectric cylinders. The rods have radius renv ¼ 0.18a and
dielectric εenv ¼ 12, while the slab has height hslab ¼ 0.5a, holes
with radius rslab ¼ 0.22a, and dielectric εslab ¼ 7, where a is the
lattice constant of the system. (b) Photonic band structure, with
the same conventions as Fig. 1(b). (c) Quality factor of the
photonic crystal slab resonances as a function of kk. Lines of
BICs are seen in the one-radiation-channel region outside the
dashed purple line, while an isolated BIC is seen at Γ.
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it is strange that the modal profile of the resonance band
would suddenly change to allow for the state to couple to
the radiative channel. However, the disappearance of the
line of BICs from the resonance band coincides with the
location of an intersection with a second TE-like resonance
band of the photonic crystal slab, shown in Figs. 3(a)–3(b).
Elsewhere in the Brillouin zone these two resonance bands
couple and exhibit an avoided crossing, but along the high
symmetry line X–M (Y–M) these two bands have opposite
mirror symmetry about the x ¼ 0 (y ¼ 0) plane of the
system, as shown in Figs. 3(c) and 3(d), and thus exhibit a
band crossing.
If the coupling to the radiative channels could be ignored

such that the system were completely Hermitian, this
accidental band crossing would occur at a Dirac point.
Instead, the coupling of the resonance bands to the out-
going radiative channels results in this system being non-
Hermitian. Moreover, the two resonance bands in question
couple to the single available radiative channel at different
rates; i.e., one resonance band possesses a line of sym-
metry-protected BICs while the other resonance does not.
Because of this unequal radiative coupling, where the
hypothetical nonradiating Hermitian system would possess
a Dirac point connecting the two bands, these two

resonance bands are instead joined by a bulk Fermi arc
in the radiating non-Hermitian system [64]. Bulk Fermi
arcs occur generically in non-Hermitian systems and form
when a Dirac point is split into two exceptional points [65]
connected by a contour where the real part of the frequen-
cies of the two resonance bands are equal, Re½ωþ� ¼
Re½ω−�. When two bands are joined at a bulk Fermi arc,
they form two halves of a single Riemann surface.
In the vicinity of the bulk Fermi arc, the effective

Hamiltonian for the systems considered here is

Ĥ ¼ ωD − iγ þ ðvgyδky − iγÞσ̂z þ vgxδkxσ̂x; ð5Þ

which results in the spectrum of the resonance bands

ω� ¼ ωD − iγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2gxδk2x þ v2gyδk2y − γ2 − 2iγvgyδky

q
:

ð6Þ

Here, ðδkx; δkyÞ is the wave vector displacements from the
underlying Dirac point at kk;D which has frequency ωD, 2γ
is the radiative rate of the resonance band which couples to
the single environmental channel, ðvgx; vgyÞ is the group
velocity describing the dispersion near the Dirac point, and
σ̂x;z are Pauli matrices. Equations (5) and (6) are written for
the accidental band crossing along X–M, but letting x ↔ y
yields the correct set of equations for the accidental
band crossing along Y–M. As can be seen, the spectrum
given in Eq. (6) exhibits a pair of exceptional points at
ðδkx; δkyÞ ¼ ð�γ=vgx; 0Þ, where ωþ ¼ ω−, and which are
connected by a bulk Fermi arc along the contour δkx <
jγ=vgxj and δky ¼ 0.
The connection between the two resonance bands at the

bulk Fermi arc explains the apparent abrupt termination of
the lines of BICs in Figs. 1(c) and 2(c). Along the X–M
high symmetry lines where δkx ¼ 0, one resonance band
remains a BIC with Im½ω� ¼ 0, but which band possesses
the BIC switches when the line of BICs passes through the
bulk Fermi arc, where the two bands are joined and form a
single Riemann surface, as shown in Figs. 3(a) and 3(b).
We can confirm that nearM the symmetry of the upper and
lower bands switches along the X–M line upon passing
through the bulk Fermi arc by viewing the modal profiles
of the resonances on both sides of it. As can be seen in
Figs. 3(c)–3(h), for δky < 0, the odd x symmetry mode is
found on the upper resonance band, but for δky > 0 this
mode is found on the lower resonance band. Thus, the
symmetry protected line of BICs does exist along the entire
high symmetry line but passes from the upper resonance
band to the lower resonance band through a bulk Fermi arc.
In conclusion, we have demonstrated that the environ-

ment surrounding a device is an equal partner in determin-
ing the presence of BICs. This ability to engineer the
environment rather than the device to realize BICs in a
system opens up a broad range of new experimental

FIG. 3. (a) Frequencies and quality factors near M for two TE-
like resonance bands of the photonic crystal slab and C2v
symmetric photonic crystal environment shown in Fig. 1(a).
There are two bulk Fermi arcs at kka=π ¼ ð1; 0.852Þ and
kka=π ¼ ð0.872; 1Þ. (b) Model showing the bulk Fermi arc at
kka=π ¼ ð1; 0.852Þ. (c)–(h) Cross section of the Ex component
in the xy plane of the Bloch mode profiles of the upper resonance
band (c), lower resonance band (d), and radiation channel (e) at
kka=π ¼ ð1; 0.6Þ. Locations of the dielectric features in the
photonic crystal slab (c)–(d) or photonic crystal environment
(e) are denoted with light gray shading. (f)–(h) Similar to (c)–(e),
except at kka=π ¼ ð1; 0.96Þ. Mode profiles of the resonance
bands were calculated using MEEP [61], while the radiation
channel profiles were calculated using MPB [63].
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possibilities. First, given the advent of advanced 3D-
printing techniques such as two-photon polymerization
technology [56], we expect that structures such as the
one described here can be straightforwardly fabricated in
photonic systems. Likewise, conventional 3D-printing
already enables the construction of acoustic systems with
complex unit cells [66,67] which could be used to realize
BICs through environmental design. Moreover, there are
many photonic systems, such as planar grain boundaries in
self-assembled structures [57], where controlling the spe-
cifics of the embedded device may be very difficult, but
engineering the environment is comparatively simple, that
may yield an entirely different route to photonic BICs than
has been previously studied.
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