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We generalized the nonparaxial field components of Laguerre–Gaussian and flattened Gaussian beams obtained
using the angular spectrum method to include symmetric radial and angular expansions and simplified them using
an approximate evaluation of the integral equations for the field components. These field components possess series
expressions in orders of a natural expansion parameter, which clarifies the physical interpretation of the series
expansion. A connection between Laguerre–Gaussian and flat-top Gaussian profiles is obtained. © 2010 Optical
Society of America
OCIS codes: 000.4430, 050.1960, 070.2590, 100.3020, 100.6890.

Although the paraxial approximation is of central impor-
tance to understand far-field electromagnetic field effects,
it is often necessary to employ extensions of this approach
when the ratio of the wavelength to the beam diameter is
close to unity. Nonnegligible longitudinal contributions
must then be evaluated. The realization that longitudinal
contributions arise naturally and consistently from an or-
der expansion of the source-free Maxwell equations was
emphasized by Lax et al. [1]. This early work provided the
context formost of the subsequent extensions of the para-
xial approximation to include longitudinal field contribu-
tions. For example, the radial emission of electrons from
an intense laser beam requires such a treatment, as pre-
viously investigated by Cicchitelli et al. [2] and Quesnel
andMora [3]. Generalization of the simpleGaussian shape
of the beam in an aperture to radially symmetric field dis-
tributionswas accomplished by Sepke andUmstadter in a
series of publications that emphasized applications to flat-
tened Gaussian modes, annular Gaussian modes, and
tightly focused spot sizes ([4] and references therein). Pre-
vious work on Laguerre–Gaussian beams and corrections
to the paraxial approximation using the Felsen complex
source approach has also been reported by Bandres
and Gutiérrez-Vega [5] and Yan and Yao [6]. Zhou [7]
has also used the angular spectrum method to examine
Laguerre–Gaussian beams. The development presented
here attempts to recast these previous derivations in a
simplified form.
More specifically, the standard development of a gen-

eral flat-top Gaussian or Laguerre–Gaussian field in an
aperture is generalized to more flexible radial and angu-
lar forms, similar to those of Sepke and Umstadter [4].
Simultaneously, simplification is achieved by splitting
the domain of the amplitude functions as in Cicchitelli
et al. [2] and Agrawal and Pattanayak [8]. Deviations from
a pure paraxial approximation may be explicitly tracked
in this formalism in terms of a natural expansion param-
eter, f , which is the ratio of the wavelength to the beam
waist [1]. The resulting expressions for the vector field
components are obtained as series in terms of Bessel
functions and Laguerre polynomials and are thus numeri-
cally more tractable than previously reported series
expansions for flattened Gaussian distributions. To our

knowledge, no such complete analytic solution currently
exists for Laguerre–Gaussian beams.

The present formalism developed here follows directly
from expressions appearing in Cicchitelli et al. [2],
Agrawal and Pattanayak [8], and extended in Sepke and
Umstadter [4]. These earlier derivations relied upon the
angular spectrum solution to the vector field components
in an aperture [9,10] (see also the Bouwkamp review
[11]). This technique is also employed in the following
development.

Consider the general expression describing a flat-
tened Gaussian or Laguerre–Gaussian distribution for
the transverse field component in the aperture (z ¼ 0),
where without loss of generality Ey ¼ 0 [4]:
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and the coefficients an;l describe the structure of the
distribution. There is an additional requirement that l
is only even or odd in agreement with n being even or
odd, i.e., aeven;odd ¼ aodd;even ¼ 0.

One could obviously rewrite the polynomial portion of
this expansion in terms of Laguerre polynomials of the
squared radius, Lnð r2

2w2
0
Þ, as is typical in previously pub-

lished results, but the chosen form simplifies the deriva-
tion and result. At this point we observe that flat-top
Gaussian profiles are Laguerre–Gaussian profiles that
only allow n even and l ¼ 0, and, as we will show, a single
derivation provides solutions to both forms of profiles in
the aperture. This field component, as described by the
angular spectrum method, can be characterized over all
space by the generalized amplitude function, Axðp; qÞ:
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where b · r represents the usual angular spectrum vari-
ables pxþ qy ¼ br cosϕ, defining b2 ¼ p2 þ q2. The
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angular integral can be evaluated immediately leaving
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This integral has a well-known solution [12] when
n − l ≥ 0, which can be written in terms of exponentials
and generalized Laguerre polynomials:
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where f ¼ 1
kw0

¼ λ
2πw0

is the natural expansion factor

appearing in Louisell et al. [1] and c� ¼ n�l
2 , which are al-

ways nonnegative integers given the restrictions on n
and l.
Although this expansion holds for all real p and q, a

useful approximation is to ignore evanescent waves cor-
responding to the condition b2 > 1, such that Axðp; qÞ ¼ 0
for these values. Thus, the amplitude function is nonvan-
ishing only for the range 0 ≤ b2 ≤ 1. The complete spatial
dependence of the vector component Ex becomes
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Using the multiplication relations for Bessel and mod-
ified Bessel functions following [2,8], the last exponential
term can be expressed as an exact summation in the form
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for b2 < 1 and where hð1Þm−1ðkzÞ is the (m − 1)st-order
spherical Bessel function of the third kind. Evaluating
the angular integral, the field component now appears as
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This last integral may now be expressed as a difference
of two infinite-range integrals
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each of which converges absolutely for fixedm. Because
the large b dependence is controlled by the Gaussian ex-
ponential term, the second integral may be neglected for
f < 0:4 [2,8] when N ¼ 0 (and, hence, l ¼ 0). A more gen-
eral error bound for this integral is presented below.

After discarding the second integral and substituting
the explicit expansion of the associated Laguerre polyno-
mial into Im;n;lðrÞ yields the analytical form [12]
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With this result in hand, the Ex field component has the
simplified form,
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with
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This last expression represents a new, analytic solu-
tion to Laguerre–Gaussian beams beyond previously
known results [5–7]. Additionally, this is a significant sim-
plification of earlier expressions of flattened Gaussian
beams [4] because the integral may be evaluated in terms
of Bessel and Laguerre functions rather than more
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complicated special functions such as Gegenbauer poly-
nomials. Finally, the dependence of the electric field
component on the expansion parameter, f , is explicit
and contains only even powers of f , in agreement with
Lax et al. [1], who demonstrated that the transverse
and longitudinal field components should be either even
or odd, respectively. Note that when l is odd, the contri-
butions to the field are imaginary if an;l is real and that the
Laguerre polynomial is of a half-integer order. Half-
integer Laguerre polynomials have known analytic forms
in terms of modified Bessel functions of the first kind,
IνðxÞ. Note that the Gaussian term still enforces conver-
gence for large r.
The remaining field components may be derived in the

standard fashion by separating the source-free Maxwell
equations into transverse and longitudinal components
[13,14], following the discussion given by Cicchitelli et al.
[2]. Considering the relative simplicity of the generalized
field components above, it is important to consider the er-
ror introduced by neglecting the second integral inEq. (9).
Denoting the second, neglected, integral in Eq. (9) as
IerrorðrÞ andnoting that f is small, the Laguerre polynomial
can be approximated as its highest-order term LðlÞ
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holds. This integral can be evaluated analytically and
taking the most extreme term with n ¼ N yields
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whenN is even. Thus the error incurred in each termusing
the separation of Eq. (9) may be estimated for any val-
ues of f and N and adding 1 to an odd N . For reasonable
values of N ≤ 100, f ∼ 0:03 allows for accuracy greater
than 10−10.
The preceding development generalizes the typical

Gaussian source function in an aperture to include a
more realistic and flexible radial and angular depen-
dence. The field components describe flat-top profiles

and annular beams, as well as Laguerre–Gaussian beams.
It is clear that flattened Gaussian profiles are a form of
the Laguerre–Gaussian profile without an angular mo-
mentum term. Furthermore, the effect of the nonparaxial
terms is explicit in the structure of the field components
and in the error estimates, facilitating numerical evalua-
tions of the field. This approach thus represents a signif-
icant simplification of previous research.

Additionally, this approach is equally valid when look-
ing at the expansion of the magnetic fields. Given a co-
herent, linearly polarized beam of light in the aperture
with Ey ¼ 0 and Bx ¼ 0, there will be field components
generated by both fields, as mentioned by Sepke and Um-
stadter [4]. These two sets of fields beyond the aperture
must be added together to form the complete solution.
Typically the terms from the magnetic field are neglected
in the aperture, because they are an order in f smaller for
the electric field, which is the field of interest in many
experiments. However, it is conceivable to imagine a sys-
tem of magneto-optical tweezers, for example, which
work similarly to ordinary optical tweezer systems but
instead use the magnetic properties of the particle to trap
it. For such an experiment one would be more interested
in the analogous derivation, which starts with the mag-
netic field of the beam.

This work was performed under the auspices of the
United States Department of Energy (DOE) by the
Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
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