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We derive a full field solution for Laguerre–Gaussian beams consistent with the Helmholtz equation using
the angular spectrum method. Field components are presented as an order expansion in the ratio of the wave-
length to the beam waist, f ¼ λ=ð2πw0Þ, which is typically small. The result is then generalized to a beam of
arbitrary polarization. This result is then used to reproduce the signature angular momentum properties of
Laguerre–Gaussian beams in the paraxial limit. The subsequent higher-order term is similarly obtained, which
does not display a clear separation of orbital and spin angular momentum components. © 2011 Optical Society
of America
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1. INTRODUCTION
Nearly two decades ago, Allen et al. demonstrated that cylind-
rical solutions to the paraxial wave equation, Laguerre-
Gaussian beams, possess a well-defined angular momentum,
which can be specified in terms of an orbital component due
to the shape of the electromagnetic field and a spin compo-
nent due to the polarization of the beam [1]. While it had been
known that light was able to impart angular momentum in
objects due to its polarization [2], this was the first theoretical
result demonstrating both the orbital and spin contributions to
this effect. These results have also had significant experimen-
tal implications, most notably in optical trapping techniques.
Less than a decade ago, O’Neil et al. experimentally observed
both the transfer of orbital and spin angular momentum to
a particle trapped in an otherwise traditional optical trap [3].
This is an exciting experimental frontier since it can open new
ways of manipulating trapped particles, enabling a wide array
of experiments in physics and biology.

Since these first theoretical investigations, much effort has
been expended to understand the general definition and role
of orbital and spin angular momentum beyond the paraxial
limit. Initial efforts focused on decomposing the Poynting
vector into orbital and spin components [4,5]. Subsequently,
it was noted that the conventional choice for general field
polarizations was incompatible with the requirement that
fields be transverse in momentum space, and this led to the
discovery of a spin–orbit interaction [6,7]. This interaction
predicts that nonparaxial corrections to the orbital angular
momentum will depend upon σ, the parameter that charac-
terizes the spin angular momentum of plane waves.

The angular spectrum method, an expansion of the Green’s
function in free space, is well known. An excellent review
of this method was written by Bouwkamp [8] with early ap-
plications appearing in Clemmow [9]. In this paper, we use
the angular spectrum method to find the full field solutions
for Laguerre–Gaussian beams with arbitrary polarization.

Our approach is similar to previous authors, who used the
angular spectrum method to find the exact field solutions
of TEM00 laser modes in powers of the small parameter
f ¼ 1=ðkw0Þ, where w0 is the beam waist at the focal spot
[11–14]. This small parameter, f , was first introduced by
Lax et al. in their analysis of how the paraxial equation,
and corrections to it, arise naturally and consistently from
an order expansion of the source-free Maxwell equations [15].

A previous attempt to use the angular spectrum method to
derive the electric field components of Laguerre–Gaussian
beams was performed by Chen et al. [14]. This work demon-
strated that the spherical Bessel functions generated using
the angular spectrum method on Laguerre–Gaussian beams
correctly reproduced the waist function seen in paraxial
representations of the fields. These results, which extend the
work of Agrawal and Pattanayak [11], demonstrate that the
divergence seen in the longitudinal direction of the field com-
ponents is the result of interchanging summations. This result
led to increased activity in deriving the far-field expressions
for Laguerre–Gaussian beams using singular expansion tech-
niques [16] or the method of stationary phase [17].

In this paper we derive the full field components for
Laguerre–Gaussian beams of arbitrary polarization using
the angular spectrum method. We stress that the field compo-
nents presented here are exact solutions to the full Helmholtz
equation, expressed in powers of f , with the evanescent com-
ponents removed. With the full field components we then
demonstrate that by keeping only the paraxial terms,
Oðf 2Þ → 0, the quantization of the angular momentum of
Laguerre–Gaussian beams separates into orbital and spin
components, as expected, but when keeping Oðf 2Þ the separa-
tion into orbital and spin components disappears [7]. Further-
more, this leading order, nonparaxial angular momentum
derived here does not display the same longitudinal direction
divergences seen in the field intensities noticed by Chen
et al. [14].
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In the following section, the angular spectrum method is
used to develop the field components given Laguerre–
Gaussian beam initial conditions. The next section presents
an error analysis of the integral evaluations and a discussion
of the source of the longitudinal divergence. The full field com-
ponents are then derived in the third section. The full expres-
sion for the field angular momentum is developed in the fourth
section and the discussion concludes with a summary of the
possible applications of these results.

2. ANGULAR SPECTRUM METHOD
For a TE Laguerre–Gaussian beam with linear polarization
along the x direction, we have Ey ¼ 0 for all space and
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where b · ρ represents the usual angular spectrum
variables bxxþ byy ¼ bρ cosðϕ − θÞ, b2 ¼ b2x þ b2y and θ ¼
arctanðby=bxÞ. Inserting the initial conditions produces

Aðb; θÞ ¼ E0

�
k
2π

�
2
Z

∞

0

Z
2π

0

� ffiffiffi
2

p
ρ

w0

�
l
LðlÞ
p

�
2ρ2
w2

0

�

× exp
�
−
ρ2
w2

0

�
exp½ilϕ�

× exp½−ikbρ cosðϕ − θÞ�ρdρdϕ; ð3Þ

which is the amplitude function for a specified ðp; lÞ Laguerre–
Gaussian mode.

The angular portion of this integral can be evaluated by
using the well-known identity
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where Jl is the Bessel function of the first kind of order l.
The Laguerre polynomial can also be expanded as
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which allows us to rewrite our expression for the amplitude
function as
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This integral has a known closed form solution [18], which
is
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where f ¼ 1=ðkw0Þ ¼ λ=ð2πw0Þ is the natural expansion factor
appearing in Lax et al. [15].

There are a few things that are immediately interesting
about this formula. First, in agreement with Zhou [17], the an-
gular momentum term has been preserved in amplitude space.
Furthermore, this formula is exact—no approximation has
been introduced in the derivation.

With the generalized amplitude of the Laguerre–Gaussian
beam in hand, we can construct the complete field of the vec-
tor component Ex as
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where m2 ¼ 1 − b2. The positive root of m is taken since this
corresponds to waves propagating in the þ ẑ direction.
Although this expansion holds for all real values of b, it is
a useful, and common, approximation to ignore the evanes-
cent waves [12,13], which corresponds to b2 > 1 so that
Aðb; θÞ ¼ 0 for these values. Thus, the complete spatial depen-
dence of Ex becomes
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The angular integral can be evaluated in the same way as
above. To evaluate the radial integral, decompose the asso-
ciated Laguerre polynomial again
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to retain only the explicit polynomial terms. Using the multi-
plication relations for Bessel and modified Bessel functions
[11,12,19], exp½ikmz� can be expressed as an exact summation
in the form
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since b2 < 1 and where hð1Þn is the nth-order spherical Bessel
function of the third kind. With these expansions, and after
evaluating the angular integral, the field Ex can be expressed
as
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This last integral may now be expressed as the difference
between two infinite-range integrals
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each of which converges absolutely for fixed n. It is clear
from the form of these integrals that the large b behavior is
controlled by the Gaussian exponential term, especially
because 1=f 2 is large. For certain ranges of f with fixed values
of l and p, the second integral may be neglected as has been
previously demonstrated [11,12,20]. A thorough discussion
of when this is possible is presented in a section below, but
for now we will proceed assuming that we are within the
acceptable parameter space.

After discarding this second integral, IðρÞ can be evaluated
as [18]
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With this result in hand, the complete spatial dependence of
Ex has the form
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This last expression represents a significantly cleaner result
for Laguerre–Gaussian beams using the angular spectrum
method than has previously been presented [17,20]. Note that
the field component appears as an expansion in powers of the
natural order parameter f . Most importantly, it makes obvious
the conservation of the angular momentum of the Laguerre–
Gaussian beam through the transformations that comprise the
angular spectrum method. It should again be emphasized that
no approximation has been made in the derivation of this
equation. So long as the second integral in Eq. (14) can be ne-
glected, which depends on p, l, and f , this expression repre-
sents an exact solution to the full Helmholtz equation.
Additionally, the restricted dependence upon the even powers
of f is in agreement with Lax et al. [15].

3. ERROR INTEGRAL ANALYSIS
The results presented here are only valid when the second
integral in Eq. (14) vanishes sufficiently fast. Rewriting this
second integral
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where α and β have been set equal to p, which is the value they
have for the largest term in the sum, and the Bessel function
has been dropped since it is at most of order unity. By making
the substitution u ¼ b2, Eq. (17) can be expressed in terms of
the well-known exponential integrals, EnðxÞ,
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which are readily evaluated, even for half-integer order.
Finally, one might suspect that for large n this integral will

diverge as un begins to shift the maximum of the integrand
completely into the range of Ierror. However, noting the factor
of 1=n! in Eq. (12), as n becomes large this term behaves as
ðu=nÞn, which tends to zero for large n, small u. When u ≥ n,
u ≫ 4f 2 and the exponential term exp½−u=4f 2� dominates the
behavior. Thus, such a shift of the maximum of the integrand
due to increasing n does not occur and it can be shown that in
fact the error decreases as n increases due to the reasons
mentioned above.

For the trivial case with p ¼ l ¼ 0, f ≤ 0:2 allows for
accuracy greater than 10−2. This result is in agreement with
previously published results [12,20], noting the difference in
the definition of the beam waist from these previous results,
w0 ¼

ffiffiffi
2

p
wprev. For reasonable values of pþ l=2 ≤ 15, we

require f ≤ 0:055 for results accurate to within 10−2.
It should be recognized, though, that this favorable series

convergence fails in the limit of large spherical radius, as
discussed by Chen et al. [14]. Physically, the asymptotic form
of the cylindrical field expansion must match a spherically ex-
panding radial plane wave. The onset of this transition region
can be quantified by minimizing the phase difference between
the cylindrical and spherical representations. Qualitatively,
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this behavior may be captured by a simple asymptotic expan-
sion of the Ex field component in Eq. (9). That is, observe that
the large kz form of Eq. (11) is
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to first order in (1=kz). This simple form clearly displays the
expected far-field behavior of the Ex component, indicating
that retention of the infinite series is necessary to obtain
the appropriate asymptotic spherical form [14].

4. FIELD COMPONENTS
With the explicit form of Ex for linearly polarized TE modes
known, the rest of the field components for such modes can
now be calculated following [11,12] using
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These integrals can be evaluated using
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which are expansions similar to Eq. (11) but tailored to match
the required integrals above. Even though these expansions
differ slightly in their dependence upon z, they still have ex-
actly the same factors of 1=n! and ðb2=2Þn that were used to
evaluate the previous integral above. Thus, they will lead to
the same expression for In;l;α;βðρÞ and will converge for the
same values of f , l, and p.

The treatment of the field components can be extended to
TE modes of arbitrary polarization. The angular momentum of
an electromagnetic wave about the axis of propagation due to
its polarization is usually defined as σz ¼ iðαzβ�z − βzα�zÞ [21]. It
should be noted, though, that this definition of field polariza-
tion is only correct when the longitudinal component of the
total electric field vanishes; otherwise, unambiguous polariza-
tion states cannot be defined and a transformed set of field
components must be used, as emphasized recently by Li
and co-workers [22]. The electric field is given by
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�
: ð31Þ

2256 J. Opt. Soc. Am. A / Vol. 28, No. 11 / November 2011 A. Cerjan and C. Cerjan



Finally, we define
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which are related to radial derivatives of Eq. (16), for simpli-
city. Given these, the field components of a TE Laguerre-
Gaussian beam of arbitrary polarization, where Eðx; y; zÞ in
Eq. (29) is given by Eq. (1), are
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f 2nðkzÞn
h
2nhð1Þn−1ðkzÞ

− kzhð1Þn ðkzÞ
i
v0;nðρÞ

þ ik
ω exp½ilϕ�

X∞
n¼0

f 2nþ2ðkzÞnþ1hð1Þn ðkzÞ

×

��
αz

4xy
w2

0

þ βz
4y2

w2
0

�
v2;nðρÞ

þ ðαz þ iβzÞ
lðl − 1Þw2

0

ρ4 ðix2 þ 2xy − iy2Þv0;nðρÞ

− αz
2l
ρ2 ðix

2 þ 2xy − iy2Þv1;nðρÞ

− βz
�
4l
ρ2 ðy

2 þ ixyÞ þ 2

�
v1;nðρÞ

�
; ð38Þ

Byðx; y; zÞ ¼
ik
ω αz exp½ilϕ�

X∞
n¼0

f 2nðkzÞn
h
kzhð1Þn ðkzÞ

− 2nhð1Þn−1ðkzÞ
i
v0;nðρÞ

−
ik
ω exp½ilϕ�

X∞
n¼0

f 2nþ2ðkzÞnþ1hð1Þn ðkzÞ

×

��
αz

4x2

w2
0

þ βz
4xy
w2

0

�
v2;nðρÞ

þ ðβz − iαzÞ
lðl − 1Þw2

0

ρ4 ðix2 þ 2xy − iy2Þv0;nðρÞ

− βz
2l
ρ2 ðix

2 þ 2xy − iy2Þv1;nðρÞ

þ αz
�
4l
ρ2 ðixy − x2Þ − 2

�
v1;nðρÞ

�
; ð39Þ

Bzðx; y; zÞ ¼
ik
ω exp½ilϕ�

X∞
n¼0

f 2nþ1ðkzÞnþ1hð1Þn−1ðkzÞ

×

�
ðiαz − βzÞlw0

�
x − iy

ρ2
�
v0;nðρÞ

þ
�
βz

2x
w0

− αz
2y
w0

�
v1;nðρÞ

�
: ð40Þ

Note that the field components perpendicular to the direc-
tion of propagation are an expansion in even powers of f ,
while the longitudinal components are an expansion in odd
powers of f , in agreement with Lax et al. [15]. Comparing
these results with those derived earlier [4,21], we note that
factors of the form x� iy are related to exp½�iϕ�, generated
from taking transverse coordinate derivatives of Eðx; y; zÞ in
Eq. (29), so there is actually no discrepancy with these pre-
vious expressions. Finally, as the dependence upon spherical
Bessel functions is similar to that in previous works [14],
these formulas could be rearranged to resemble the waist
function in paraxial representations of the Laguerre–Gaussian
fields [21].

A nearly identical derivation also suffices to define the
TM modes of arbitrary polarization for Laguerre–Gaussian
beams. A full treatment of these modes is omitted here but
is straightforward.
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5. ANGULAR MOMENTUM
With the components of exact Laguerre–Gaussian beams
worked out above, it is important to reproduce their signature
angular momentum properties. In the paraxial limit, Laguerre–
Gaussian beams have quantized orbital angular momentum
proportional to l and spin angular momentum proportional
to σz [1]. Beyond the paraxial limit, the spin–orbit interaction
predicts that later terms in the total angular momentum will
not be as readily separated and specifically that the orbital
angular momentum picks up a term proportional to σz.

With the field components presented above, we can recover
the paraxial result by letting Oðf 2Þ → 0. This corresponds to
keeping only the first, n ¼ 0, term in each sum. One identity
that is of some use can be derived from noting that when per-
forming the angular spectrum method and expanding
exp½ikmz� using the Bessel function multiplication relations,
the n ¼ 0 term corresponds with simply taking two Fourier
transforms of the initial function and adding plane wave z
dependence. Noting this, it is demonstrable that [23]

LðlÞ
p

�
cr2

w2
0

�
¼

Xp
α¼0

Xα
β¼0

ð−1Þαþβ
�
pþ l
p − α

��
αþ l
α − β

�
cαLðlÞ

β

�
r2

w2
0

�
;

ð41Þ

which allows us to greatly simplify the n ¼ 0 terms. To com-
pare our results to Allen et al. we define

ujðrÞ ¼ E0 exp½ikz� exp½ilϕ�
� ffiffiffi

2
p

ρ
w0

�
l
exp

�
−
ρ2
w2

0

�
LðlþjÞ
p−j

�
2ρ2
w2

0

�
;

ð42Þ

and note that juj2 is equivalent to the similarly defined
function [24] where the beamwaist has taken on a fixed value.

The paraxial terms of the full field components can thus be
written as

Exðx; y; zÞ ¼ αzu0ðrÞ; ð43Þ

Eyðx; y; zÞ ¼ βzu0ðrÞ; ð44Þ

Ezðx;y;zÞ¼ if

�
ðαzþ iβzÞ

lw0ðx− iyÞ
ρ2 u0ðrÞ

−
2
w0

ðαzxþβzyÞu0ðrÞ−
4
w0

ðαzxþβzyÞu1ðrÞ
�
; ð45Þ

Bxðx; y; zÞ ¼ −βz
k
ωu0ðrÞ; ð46Þ

Byðx; y; zÞ ¼ αz
k
ωu0ðrÞ; ð47Þ

Bzðx;y;zÞ¼ if
k
ω

�
ðαzþ iβzÞ

lw0ðyþ ixÞ
ρ2 u0ðrÞ

−
2
w0

ðαzy−βzxÞu0ðrÞ−
4
w0

ðαzy−βzxÞu1ðrÞ
�
; ð48Þ

where the spherical Bessel functions have been rewritten as
exponentials and then collapsed into the factors of u.

The energy flux density is given by the real part of
the Poynting vector, which is given by S ¼ 1=2½E ×H�þ
E� ×H�. For paraxial Laguerre–Gaussian beams, this is

Sx ¼ σz
f k
μω

��
lw0y
ρ2 −

2y
w0

�
ju0j2 −

4y
w0

u�
0u1

�
−

ly
μωρ2 ju0j2; ð49Þ

Sy ¼ −σz
f k
μω

��
lw0x

ρ2 −
2x
w0

�
ju0j2 −

4x
w0

u�
0u1

�
þ lx

μωρ2 ju0j2;

ð50Þ

Sz ¼
k
μω ju0j2: ð51Þ

The total energy flux over the surface perpendicular to the
direction of propagation is given by the integral of the Poynt-
ing vector over the surface. It is clear that there is no net en-
ergy flux in the transverse directions as Sx and Sy are odd x
and y. In fact, it can be seen from the general structure of the
exact field equations that there cannot be any energy flux in
the transverse directions. Noting that the transverse field com-
ponents are even in the number of transverse variables, and
the longitudinal field components are odd in the number of
transverse variables, Sx and Sy will always be odd in trans-
verse coordinates and thus vanish upon integration over
the entire plane.

Similarly, the time averaged angular momentum density,
j ¼ εμr × S, will also have transverse components that are
odd in the transverse directions. This is, again, a general prop-
erty of the full field equations and not dependent upon the
paraxial approximation. Thus, upon calculating the flux of an-
gular momentum density through the transverse plane, these
will also be zero, and are omitted here in this paraxial calcula-
tion. The transverse component of the angular momentum
density in the paraxial limit is

jz ¼ ε l
ω ju0j2 − ε σzω

��
l −

2ρ2
w2

0

�
ju0j2 −

4ρ2
w2

0

u�
0u1

�
: ð52Þ

However, this can be rewritten as

jz ¼ ε
�
l
ω −

σzρ
2ω

∂

∂ρ

�
ju0j2; ð53Þ

which is in agreement with Allen et al. [24]. With this in hand,
it is easy to show that the ratio of the total angular momentum
flux through the plane perpendicular to the direction of the
beam’s travel with the energy flux through the same region,
in the paraxial limit, is

R
jzdρR
Szdρ

¼ ffiffiffiffiffiεμp �
lþ σz
ω

�
; ð54Þ

which is the characteristic property of paraxial Laguerre–
Gaussian beams. Note that even though our definition of u0

is not exactly what is used in the typical treatment of paraxial
Laguerre–Gaussian beams, ju0j2 does agree with such treat-
ments for a beam of constant waist.
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While this result for paraxial beams has been known for
some time, what is novel about this derivation is that it begins
by solving for the full field components in terms of the small
parameter f and then recovering the paraxial terms, rather
than simply solving the paraxial equation for only the paraxial
terms. Thus, in a fully consistent manner, one can recover
the complete angular momentum flux from the results pre-
sented here.

A similar process is used to derive the first nonparaxial
term. First noting that Sz;n ∝ f 2n and jz;n ∝ f 2n=k, we can find
the first nonparaxial term in powers of f , where Sz;n is the nth
term of the total Poynting vector component Sz, and jz;n is
defined similarly. Thus, keeping terms of Oðf 2Þ, we find that
the total angular momentum can be expressed as

jz
Sz

¼ jz;0 þ jz;2
Sz;0 þ Sz;2

: ð55Þ

Pulling out a factor of Sz;0 and performing a binomial
expansion, this can be rewritten as

jz
Sz

¼ jz;0
Sz;0

þ jz;2
Sz;0

−
jz;0
Sz;0

Sz;2

Sz;0
; ð56Þ

and the last two terms can be clearly identified as the leading
order nonparaxial correction to the normalized total angular
momentum. Calculating these terms is again an exercise in
keeping consistent terms from the expressions for the fields
and the algebra is quite lengthy. Upon integrating over the
transverse plane x2 ¼ y2 ¼ ρ2=2, and these terms can be writ-
ten as

R
jz;2dρR
Sz;0dρ

¼ ffiffiffiffiffiεμp f 2

ω

�
ð1 − σzÞl2ðl − 1Þw2

0

Z
∞

0

1
ρ v

2
00dρ

− 2ð1þ σzÞlðl − 1Þ
Z

∞

0
v00v10ρdρ

þ 2ð1þ σzÞ
l
w2

0

Z
∞

0
v210ρ3dρ

þ σz
w2

0

Z
∞

0
½v11v00 − v10v01�ρ3dρ

�
; ð57Þ

R
Sz;2dρR
Sz;0dρ

¼ f 2
�
ð1þ 2lÞ

Z
∞

0
v00v10ρdρ −

Z
∞

0
v00v01ρdρ

−
2
w2

0

Z
∞

0
v00v20ρ3dρ

�
: ð58Þ

Note that even though one of the terms appears diverge
for ρ ¼ 0, it does not since v00ðρÞ has l factors of ρ in it; in
the case l ¼ 0 the prefactor removes this term from the
expression. Additionally, while the fields generated with the
angular spectrum method demonstrate divergences, the z
dependence is lost in the calculation of the Poynting vector,
which is expected physically since all of the momentum is
travelling in the longitudinal direction while an averaging in-
tegration is performed over the entire transverse plane. Thus,
it is plausible to conclude that this expression represents the
nonparaxial angular momentum even in the far-field regime.

From these expressions, it is impossible to tell which of
these factors contribute to the orbital angular momentum

and which contribute to the spin angular momentum, but from
evaluating these terms numerically, it can be shown that this
leading nonparaxial term is not zero. It should also be noted
that this term is nonzero even without the binomial expansion
used for Eq. (56). This observation constitutes a direct refuta-
tion of previous results claiming that the paraxial angular
momentum was the full angular momentum [4], as empha-
sized previously by Li [7].

6. SUMMARY
We summarize the main results presented above. First, the
angular spectrum method was used to derive the exact solu-
tion for the full field components of Laguerre–Gaussian beams
in an order expansion of the small parameter f . This derived
expansion naturally and consistently identifies the expansion
terms beyond the usual paraxial approximation, thus provid-
ing a framework to examine experimental deviations from
strict paraxial response. Furthermore, the conservation of
angular momentum in Laguerre–Gaussian beams arises in a
transparent manner. Second, by examining the complete field
solutions with arbitrary field polarization, the expected
separation of angular momentum flux is recovered in the
paraxial limit. Third, our analysis of the leading nonparaxial
contribution to the total angular momentum demonstrates
that the paraxial angular momentum is only valid within
the paraxial limit. The form of the field components provides
an explicit representation for a discussion of the nonparaxial
contributions and extends earlier integral equation treat-
ments, such as those in Barnett and Allen [21].
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