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In the main text, we showed how to apply numerical stability analysis to evaluate the stability of any lasing mode
for any given system. In this supplementary material, we obtain general analytical results for the specific question of
stability near lasing threshold.

In particular, we use perturbation theory to compute the stability eigenvalues σ(q = q0 + δk, d) for small δk, where
D0 = Dt(1 + d2) with Dt being the pump at threshold, for points q0 where σ(q0, 0) = 0. We validate our semi-
analytical results against brute-force stability eigenvalues computed as in the main text, showing excellent agreement.
The perturbation theory is particularly subtle due to eigenvalue crossings that result in “critical lines” where σ changes
form, and these are also reproduced in the numerical validation. The final result is a formula that determines stability
near threshold in terms of simple integrals of the threshold lasing mode. In the limit of low-loss resonances, this result
further simplifies to a criterion relating band curvature to gain detuning as mentioned in the main text.

I. PERTURBATION ANALYSIS

In all systems, we have by definition σ(0, 0) = 0. For reciprocal systems, the mode at −k also reaches threshold
at Dt so that σ(±2k, 0) = 0 [1]. Note that this last case does not have to considered when k and −k are separated
with lattice vectors, as for example when lasing at a band edge or at the center of the Brillouin zone. We first give a
detailed derivation in the case q0 = 0, and then present the results for q0 = ±2k.

The stability eigenproblem is given by
(
Aq +Bσ + Cσ2

)
Uq = 0, where:

Aq =


∆r
k,q −∆i

k,q ω2 0 0
∆i
k,q ∆r

k,q 0 ω2 0
γ⊥D 0 ωa − ω γ⊥ γ⊥E

r

0 γ⊥D −γ⊥ ωa − ω γ⊥E
i

−γ‖Pi γ‖P
r γ‖E

i −γ‖Er γ‖

 , B =


−σc −2εcω 0 −2ω 0
2εcω −σc 2ω 0 0

0 0 0 1 0
0 0 −1 0 0
0 0 0 0 1

 , C =


−εc 0 −1 0 0
0 −εc 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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with ∆r
k,q = −e−iqxRe(Θk)eiqx + εcω

2, ∆i
k,q = −e−iqxIm(Θk)eiqx + σcω, Er = Re(E) and Ei = Im(E). For brevity of

notation, we removed the subscript k from ωk, Ek, Pk, Dk, but vectors still refer to the periodic part of Bloch terms.
The SALT mode can be expanded in d, as for example done in Ref. 1. In particular, we have:

ω ≈ ωt + ω2d
2, E ≈ daE+

Γt
, |a|2 =

GD + ω2H

I
, ω2 = −Im

(
GD
I

)
/Im

(
H

I

)
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where E+ (resp. E−) is a solution to the linear SALT equation at threshold with Bloch vector k (resp. −k). GD, I
and H are given by:

GC =

∫
dx(εc+iσcωt) E−·E+, GD =

∫
dxDt E−·E+, I =

∫
dxDt|E+|2E−·E+, H =

1

ω2
tΓt

∂

∂ωt

[
ω2
t (GC +GDΓt)

]
.

(S3)
Note that there is an arbitrary choice for the phase of a. To simplify some computations, we take aΓ∗t to be real.

Operators Aq, B and C can then be expanded in (δk = q − q0, d):

Aq ≈ A00 +A01d+A02d
2 +A10δk +A20δk

2, B ≈ B0 +B2d
2, C = C0. (S4)

As a result, eigenvalues and eigenvectors can be expanded in the same way:

Uq ≈
∑
i,j≤2

Uijδk
idj , σ ≈

∑
i,j≤2

σijδk
idj . (S5)
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A crucial point that we confirm later, is that σ is not necessarily analytical at (q0, 0) since there is a degeneracy.
So equation (S5) is not valid inside a ball around (δk, d) = (0, 0). Instead, we have different expansion coefficients
depending on the path (δk, d).

We first consider q0 = 0. The zeroth-order stability problem is equivalent to the threshold SALT equation at k.
Because real and imaginary parts of the field are split, we have two degenerate eigenvectors vp corresponding to
σ00 = 0, where:

vp =
(
Re
(
e+p
)
, Im

(
e+p
)
, DtRe

(
Γte

+
p

)
, DtIm

(
Γte

+
p

)
, 0
)
, (S6)

for e+1,2 = E+, iE+. We also need solutions wp to the transverse problem wtpA00 = 0 given by:

wp =

(
Re
(
e−p
)
, −Im

(
e−p
)
,
ω2
t

γ⊥
Re
(
Γte
−
p

)
, −ω

2
t

γ⊥
Im
(
Γte
−
p

)
, 0

)
, (S7)

where e−1,2 = E−, iE−.
We now have U00 = b1v1 + b2v2, where bp are to be determined by degenerate perturbation theory. As we will

see later, the coefficients bp depend on the path (δk, d). To simplify notations, we note M̄ =
[
wtjMvp

]
jp

for a given

operator matrix M . The first order perturbation equations are given by:

(δk) (B0σ10 +A10)U00 +A00U10 = 0 → Ā10b = −σ10B̄0b

(d) (B0σ01 +A01)U00 +A00U01 = 0 → Ā01b = −σ01B̄0b.
(S8)

It is straightforward to show that Ā01 = 0, B̄0 = −Im
(
ω2
tΓtHM

)
and Ā10 = iIm (LM), where M =

(
1 i
i −1

)
and

L = −
∫
dx E− · ∂qΘk+qE+ (in particular, −∂qΘk+q = 2i e−ikx∇eikx for E = Ezz waves). We then have:

σ01 = 0, σ10 = i
L

ω2
tΓtH

or σ10 = i

(
L

ω2
tΓtH

)∗
. (S9)

Since 0 is a maximum of Re[σ(δk, 0)], σ01 is purely imaginary and the two eigenvalues are identical. So Ā10+σ10B̄0 = 0
and b is not determined by first order equations. Note that iσ10 is simply the slope of ω(k) at the lasing k. We can
also see that:

U01 = −
∑

bpgp +
∑

clvl, U10 = −
∑

bpA
−1
00 (σ10B0 +A10)vp +

∑
c̃lvl, (S10)

where g5p = 2DtRe
(
Γta
∗e+p ·E∗+

)
and the first fourth components of gp are zero. cl and c̃l are arbitrary complex

coefficients that will not affect our results. Note also that the fifth component of U10 is equal to zero.

The second order perturbation equations are now given by:

(δkd) σ11B0U00 + (A10 + σ10B0)U01 +A01U10 +A00U11 = 0

(δk2)
(
A20 + σ20B0 + σ2

10C
)
U00 + (A10 + σ10B0)U10 +A00U20 = 0

(d2) (A02 + σ02B0)U00 +A01U01 +A00U02 = 0.

(S11)

We start by solving the three equations independently. From results of first-order perturbation we can see that
wtj(A10 + σ10B0)U01 = 0 and wtjA01U10 = 0. The equation of order δkd then gives σ11 = 0.

Multiplying the equation of order δk2 by wtj we get:

− σ20B̄0b =
(
Ā20 + σ2

10C̄ + P̄
)
b = Re (XM) b, where P = (σ10B0 +A10)A−100 (σ10B0 +A10), (S12)

where eigenvalues are simply related to the curvature of ω(k) at the lasing k (= iσ20):

σ20 = i
X

ω2
tΓtH

or σ20 = −i
(

X

ω2
tΓtH

)∗
, b = (1,∓i). (S13)
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The degeneracy is artificially due to the separation of the real and imaginary parts of the field, so X can be easily
recovered from the non-degenerate perturbation theory of ω(k) in k. We obtain:

X =

∫
dx E− ·�E+, � = ∂2qΘk+q −

σ2
10

2
∂2G+ (i∂qΘk+q + σ10∂G)(−Θk +G)−1(i∂qΘk+q + σ10∂G),

G(ωt) = ω2
t

[
εc + i

σc
ωt

+DtΓ(ωt)

]
and ∂2qΘk+q = −I for E = Ezz waves.

(S14)

Finally, multiplying the equation of order d2 by wtj we get (using aΓ∗t = a∗Γt):

− σ02B̄0b =
(
Ā02 − Q̄

)
b, with Q̄ =

[
wtjA01gp

]
jp

= Re
[
ω2
tΓt|a|2I (M ′ +M)

]
and Ā02 = 0, (S15)

where M ′ =

(
1 −i
i 1

)
. The eigenvalues are then given by:

σ02 = 0, b = (0, 1) or σ02 = 2|a|2Im

(
I

H

)
, b = (−Im[I/H],Re[I/H]). (S16)

We see that we obtain different eigenvectors in (S13) and (S16). This means that the expansion in (S5) depends on
the path (δk, d). If d = o(δk), the expansion is determined by (S13); while it is determined by (S16) if δk = o(d). A
critical behaviour is obtained along the linse δk = αd for which the second order term is given by σ2d

2 and the three
equations in (S11) have to be combined. In this case, the second order perturbation eigenproblem becomes:

− σ2B̄0b =
[
α2Re (XM)− Q̄

]
b, (S17)

and the eigenvalues are given by:

σ2 = Im
(
α2θ + ηI

)
±
√
|ηI |2 − [Re (α2θ + ηI)]

2
, θ = − X

ω2
tΓtH

, ηI = |a|2 I
H
. (S18)

Note that θ is simply the band curvature at threshold (ω(k) ≈ ωt + iσ10δk + θδk2).
The presence of the square root function clearly shows the non-analyticity of σ. In particular, the there is an

eigenvalue crossing for α2
c = (−Re (ηI)± |ηI |) /Re (θ). The stability condition (σ2 ≤ 0) can also be immediately

retrieved:

α2
s = −2Re (ηI/θ) ≤ 0. (S19)

We can simplify the stability condition in the limit of small loss. In this case, H ≈ 2ωt
∫
εcE− · E+/Γt, E− ≈ E∗+

and Im (θ) ≈ 0. The stability condition Re (ηI) Re (θ) + Im (ηI) Im (θ) ≥ 0 becomes equivalent to:

Re (θ) (ωt − ωa) & 0. (S20)

This means that the sign of the detuning (ωt−ωa) should be the same as the sign of the band curvature (Re[θ]). For
example, when lasing at a bandedge, this means that ωa should be inside the bandgap.

As mentioned in the beginning of the section, in the case of degenerate lasing, the previous analysis should also be
carried out at q0 = −2k (or eqivalently at 2k). (Note that we are not considering the special case of a degeneracy
that comes for a wavevector other than −k. However, this situation can be studied in a similar way by computing
a perturbation expansion of σ around multiple adequate q0s.) It is easy to see that the solutions of the zeroth order
problem A−2kU00 = 0 are related to solutions of SALT at k ± 2k. Two separate cases should then be considered.

a. ka = π/2 : In this case, the problems at −k and 3k are equivalent (separated by a lattice vector) and the
zeroth order problem is degenerate. The eigenvectors are given by:

vp = eiπx/a
(

Re
(
e−iπx/ae−p

)
, Im

(
e−iπx/ae−p

)
, DtRe

(
e−iπx/aΓte

−
p

)
, DtIm

(
e−iπx/aΓte

−
p

)
, 0
)
, (S21)

while solutions of the transverse problem become:

wp = e−iπx/a
(

Re
(
eiπx/ae+p

)
, −Im

(
eiπx/ae+p

)
,
ω2
t

γ⊥
Re
(
eiπx/aΓte

+
p

)
, −ω

2
t

γ⊥
Im
(
eiπx/aΓte

+
p

)
, 0

)
. (S22)
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We now have g5p = 2Dte
iπx/aRe

(
Γta
∗e−iπx/ae−p ·E∗+

)
and Q̄ = Re

[
ω2
tΓt|a|2(KM ′ + JM)

]
, where:

J =

∫
dx Dt(E

∗
+ ·E−)(E+ ·E+) and K =

∫
dx e2iπx/aDt(E

∗
− ·E+)(E+ ·E+). (S23)

We can then obtain the eigenvalues of the problem (S17) for δk = q + 2k = αd:

σ2 = Im
(
α2θ + ηJ

)
±
√
|ηK |2 − [Re (α2θ + ηJ)]

2
, ηJ = |a|2 J

H
, ηK = |a|2K

H
. (S24)

The stability condition is now equivalent to:

α2
s = −Re

(ηJ
θ

)
+

√∣∣∣ηK
θ

∣∣∣2 − ∣∣∣ηJ
θ

∣∣∣2 + Re
(ηJ
θ

)2
non-real or real negative. (S25)

b. ka 6= π/2 : In this case, the problems at −k and 3k are different, and only −k has a solution. The zeroth
order problem for q0 = −2k is now not degenerate and eigenvectors are given by:

v = (1, −i, DtΓt, −iDtΓt, 0)E−, w =

(
1, i,

ω2
tΓt
γ⊥

, i
ω2
tΓt
γ⊥

, 0

)
E+. (S26)

The dimension of our problem is now one and we have g5 = 2DtΓta
∗E∗+ · E−, B̄0 = 2iω2

tΓtH, A20 = 2X and

Q̄ = 2ω2
tΓt|a|2J . The unique eigenvalue of (S17) is now equal to:

σ2 = −i(θα2 + ηJ). (S27)

This simply means that there is no eigenvalue crossing and that the expansion of σ does not depend on the path
(δk, d). Note that σ∗2 is also an eigenvalue around q0 = 2k (which is is simply due to the facts that our operators A,B
and C are real as indicated in the main text). The stability condition is immediately given by:

Im (ηJ) ≤ 0, (S28)

since we already have Im (θ) ≤ 0 (Im[ω(k)] has a maximum at k). Note that this stability condition is equivalent to
having a stable lasing close to threshold for the single unit-cell problem.

Finally, some useful points to mention:

• We have ηI = GD/H + ω2. It is also straightforward to use perturbation theory to show that ωl2 = −GD/H
where ωl2 is the slope (in D0/Dt − 1) of the eigenfrequency of the linear problem at the threshold without gain
saturation (ωl ≈ ωt + ωl2(D0/Dt − 1)). By definition, threshold should be reached from below the real axis, so
Im
(
ωl2
)
≥ 0. Since ω2 is real, we conclude that Im (ηI) = −Im

(
ωl2
)
≤ 0. This means that σ02 ≤ 0 and that the

single unit-cell lasing problem is always stable near threshold in absence of degeneracy.

• For TM waves (E = Ezz), we have I = J . This means that Im (ηJ) ≤ 0 and that the single unit-cell lasing
problem is also stable in the degenerate case when k 6= π/2. This is an analytical proof for part of the stability
result conjectured in Ref. 1. Note that k = π/2 is equivalent to the condition n = 4` in Ref. 1.

• For TM waves and k 6= π/2, we conclude that σ2 ≤ 0 when expanding around −2k. So the stability is only
determined by the expansion around 0 (−Re (ηI/θ) ≤ 0.)

II. NUMERICAL VALIDATION

Here, we present a numerical validation of the analytical perturbation-theory results discussed in the previous
section.

Figure S1 shows results for the 1d structure studied in the main text. Figs. S2–S3 are for the same structure, but
with ωa lying below the lasing band edge, outside the bandgap, leading to instability near threshold as predicted
above. In both cases, the numerical simulations show near-perfect agreement with the analytical results.

Figures S5–S4 show results for the 2d structures presented in the main text with a positive and negative laser
detuning, respectively. Again, numerical simulations are in agreement with the analytical results.
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FIG. S1. Same 1d structure in the main text. Numerical simulation (stars and dashed contour lines) are in agreement with
analytical results (solid lines). Since the lasing mode is at a bandedge, we have σ10 = 0. Black line corresponds to δka = αcd
and represents the line of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues). αc ≈ 0.018 and
α2
s ≈ −4.2× 10−4.
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FIG. S2. Same 1d structure in the main text but with ωaa/2πc = 0.306 and γ⊥/2πc = 0.08. The lasing mode is still at the
band edge but the laser detuning (ωt − ωa) is now positive.
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FIG. S3. Same 1d structure studied in the main text but with ωaa/2πc = 0.306 and γ⊥/2πc = 0.08. Numerical simulation
(stars and dashed contour lines) are in agreement with analytical results (solid lines). Black line corresponds to δka = αcd and
represents the line of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues). Magenta solid line
corresponds to δk = αsd from analytical perturbation results and matches Re (σ) = 0 from numerical simulation. αc ≈ 0.022
and αs ≈ 3× 10−3.
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FIG. S4. Same 2d structure in the main text with ωaa/2πc = 0.625 and ωta/2πc ≈ 0.65. Left: q0 = 0. Right: q0 = −2k.
Contour lines (dashed) are from numerical simulation. Black solid line corresponds to δk = αcd from analytical perturbation
results and represents the line of eigenvalue crossing (transition of σ−σ10δk from two real to two complex conjugate eigenvalues)
when expanding around q0 = 0. The analytical line matches results of numerical simulation. Expansion around −2k does not
show a critical line in agreement with perturbation theory (case ka 6= π/2). We have αc ≈ 0.05, α2

s ≈ −0.018 and σ10 ≈ 0.59i
when expanding around q0 = 0 (opposite sign for iσ10 when expanding around q0 = −2k).
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FIG. S5. Same 2d structure in the main text with ωaa/2πc = 0.675. Left: q0 = 0. Right: q0 = −2k. The lasing mode is
slightly shifted to ka/2π ≈ 0.1944 but still with ωta/2πc ≈ 0.65. Contour lines (dashed) are from numerical simulation. Black
solid line corresponds to δk = αcd and magenta solid line corresponds to δk = αsd from analytical perturbation results when
expanding around q0 = 0. Majenta line (analytical) matches Re (σ) = 0 from numerical simulation. Expansion around −2k
does not show a critical line in agreement with perturbation theory (case ka 6= π/2). We have αc ≈ 0.21, αs ≈ 0.088 and
σ10 ≈ 0.59i when expanding around q0 = 0 (opposite sign for iσ10 when expanding around q0 = −2k).
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