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This Supplemental Material is divided into 4 sections. In Section I, we describe the structure of chiral-symmetric
Hamiltonians and how to calculate the winding number in discrete periodic extended systems (i.e., lattice systems)
in terms of a sublattice dipole moment operator, which will allow us to derive the general class of multipole chiral
numbers in any dimension. In Section II, we enunciate the generalizations of these invariants for 2D and 3D, which
label topological phases with higher-order topology. We also show that these invariants are strictly quantized under
chiral symmetry, and provide expressions for them in the form of Bott index. Finally, we differentiate these invariants
from other first-order topological indices that protect zero-dimensional states in 2D crystals. In Section III, we detail
properties of the model proposed in the Main Text, and show the correspondence between the index Nxy and its
corner states. Finally, in Section IV, we comment on the existence of bulk and boundary obstructions separating
these phases.

I. Chiral-symmetric systems: general characteristics

Chiral-symmetric systems are described by Hamiltonians H that obey

ΠHΠ = −H, (S1)

where Π is the chiral operator. The degrees of freedom in chiral-symmetric systems can be divided into two sublattices,
A and B. The chiral operator is equal to

Π =
∑

R,α∈A

c†R,α |0〉 〈0| cR,α −
∑

R,β∈B

c†R,β |0〉 〈0| cR,β . (S2)

From now on, we will constrain our problem to the case in which the two sublattices have equal number of degrees of
freedom, NA = NB . For an eigenstate of the Hamiltonian |ψn〉 with energy εn, there is a partner eigenstate Π |ψn〉
with opposite energy,

HΠ |ψn〉 = −ΠH |ψn〉 = −εnΠ |ψn〉 . (S3)

Thus, the energy spectrum of a chiral-symmetric system is symmetric with respect to zero energy.
In the basis in which the degrees of freedom are ordered so that those of sublattice A come first and then those of

sublattice B, the chiral operator takes the form Π = σz ⊗ INA×NA
, where σz the third Pauli matrix and In×n is the

identity matrix of size n. In that same basis, the Hamiltonian takes the form

H =

(
0 h
h† 0

)
. (S4)

The eigenstates of H can be written as |ψ〉 = 1√
2
(ψAn , ψ

B
n )T , where ψA and ψB are normalized vectors that exist

only in the A, B subspaces, respectively. The chiral partner state with opposite energy is Π |ψn〉 = 1√
2
(ψAn ,−ψBn )T .

Evaluating H2 |ψn〉 = ε2n |ψn〉 leads to the eigenvalue problems

(hh†)ψAn = ε2nψ
A
n

(h†h)ψBn = ε2nψ
B
n , (S5)
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so that ψAn and ψBn can be easily obtained by diagonalizing hh† or h†h, respectively. Equation (S5) has a structure
compatible with a singular value decomposition. Indeed, it is possible to write h as

h = UAΣU†B (S6)

where UA is a unitary matrix representing the space spanned by {ψAn }, i.e., UA = (ψA1 , ψ
A
2 . . . , ψ

A
NA

) and similarly for
UB , and Σ is a diagonal matrix containing the singular values. Notice, for example, that

hh† = UAΣ2U†A

h†h = UBΣ2U†B (S7)

which are compatible with Eq. (S5) if we identify the squared energies {ε2n} with the square of the singular values in
Σ.

In what follows, it will be convenient to have a ‘flattened’ version of Hamiltonian (S4), given by

H =

(
0 q
q† 0

)
, q = UAU

†
B , (S8)

whose energies are εn = ±1. The flattening was achieved by dropping the singular value matrix Σ in the definition
of q in Eq. (S8). Contrast this with the equivalent expression in Eq. (S6) for Hamiltonian (S4). Although the
Hamiltonians (S4) and (S8) represent different systems, those two systems will belong to the same topological phase.
We will see, however, that Hamiltonian (S8) facilitates the calculation of the topological invariants associated with
its topological phase.

A. The winding number as a sublattice polarization

We now turn our attention to chiral-symmetric Hamiltonians that are extended and periodic (i.e., lattice systems).
These systems have topological phases labelled by an integer invariant, known as the winding number. Since topological
properties of a topological phase are preserved under adiabatic deformations, i.e., those deformations that preserve
the energy gap and symmetry, let us consider, without loss of generality, a flattened version of Hamiltonian (S4) at
each crystal momentum k,

H(k) =

(
0 q(k)

q(k)† 0

)
, q(k) = UA(k)U†B(k), (S9)

where H(k) is a Bloch Hamiltonian with a flat energy spectrum ε = ±1 at all k. The winding number, which classifies
different homotopy classes π1[U(n)] ∼= Z in 1D, is given by

Nx =
i

2π

∫ π

−π
Tr
[
q(k)†∂kq(k)

]
dk ∈ Z. (S10)

By replacing q(k) = UA(k)U†B(k) in Eq. (S10), we have

Nx =
i

2π

∫ π

−π
Tr
[
U†A(k)∂kUA(k)

]
dk +

i

2π

∫ π

−π
Tr
[
UB(k)∂kU

†
B(k)

]
dk.

= − 1

2π

∫ π

−π
Tr [AA(k)] dk +

1

2π

∫ π

−π
Tr [AB(k)] dk. (S11)

Here AA(k) = −iU†A(k)∂kUA(k) is the Berry connection in the A sublattice, as is AB for the B sublattice. In the
second step we have used Tr[U†(k)∂kU(k)] = −Tr[U(k)∂kU

†(k)]. Notice that Eq. (S11) is not defined mod 1.

B. Winding number in discrete space

We now seek to derive an expression equivalent to the winding number but in real space instead of momentum space.
Such an expression would enable the characterization of disordered lattices. A first step is to discretize Eq. (S11).
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For that purpose, consider the following expression,

U†(k)∂kU(k) ≈ U†(k)(U(k + δk)− U(k))/δk,

valid as δk → 0. Rearranging this expression,

I + δkU†(k)∂kU(k) ≈ U†(k)U(k + δk).

Taking the logarithm on both sides, and using the approximation Log(1 + x) ≈ x on the LHS, we have

δkU†(k)∂kU(k) ≈ Log(U†(k)U(k + δk)). (S12)

Let us now use this expression on Eq. (S11) to have a discretized version of it,

Nx =
i

2π

∑
k

Tr
[
Log(U†A,kUA,k+δk)− Log(U†B,kUB,k+δk)

]
=

1

2πi

∑
k

TrLog
[
FA,kF

†
B,k

]
, (S13)

where in the last step we used the fact that, for a unitary matrix M , Log(M) = −Log(M†). The unitary matrices
FS,k are determined by first considering the matrices

GS,k = U†S,k+δkUS,k, (S14)

which are not unitary due to the discretization of k [1]. To restore unitatiry, consider the singular value decomposition

GS,k = VS,kDS,kW
†
S,k, (S15)

where DS,k is the diagonal matrix containing the singular values. In the thermodynamic limit, DS,k is the identity
matrix. For finite L, on the other hand, the magnitud of the diagonal elements of DS,k are less than 1. We define

FS,k = VS,kW
†
S,k (S16)

which is unitary.

C. Winding number in position space

Having discretized the expression for the winding number for the case in which the momenta is discrete, we now
derive the position space version of the winding number [2]. For that purpose, consider the second-quantization
operators for the anihilation of electrons in real space and crystal momentum space, which are related by the Fourier
transform

cR,α =
1√
L

∑
k

e−ikRck,α,

ck,α =
1√
L

∑
R

eikRcR,α. (S17)

To enforce periodic boundary conditions, we impose the constraint

cR+L,α = cR,α → k =
2π

L
m, m ∈ Z, (S18)

which means that in Eq. (S17), k ∈ δk(0, 1, . . . L− 1), where δk = 2π/L.

To determine the winding number, we will need to make use of the operator associated with polarization [3] defined
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over each sublattice S = A,B [2],

P̂Sx =
∑
R,α∈S

c†R,α |0〉 exp

[
−i

2π

L
R

]
〈0| cR,α. (S19)

This operator can be written in momentum space as

P̂Sx =
∑
k,α∈S

c†k+δk,α |0〉 〈0| ck,α. (S20)

The action of P̂Sx on a state |k, α〉 = c†k,α |0〉 is to shift the momentum of the state on sublattice S, i.e., P̂Sx |k, α〉 =

|k + δk, α〉.

In what follows, we show that the most general expression for the winding number is

Nx =
1

2πi
TrLog

(
P̄Ax P̄

B†
x

)
(S21)

where P̄Sx = U†SP
S
x US .

For that purpose, we will transform Eq. (S21) into crystal momentum space and show that it reduces to Eq. (S13).
For that purpose, let us consider the projectors into sublattice S

PS =
∑

n,k,α,β

[uSn,k]αc
†
k,α |0〉 〈0| ck,β [uSn,k]∗β , (S22)

where [uSn,k]α denotes the αth component of the nth singular state in the SVD decomposition of Eq. (S6), corresponding

to the nth column of US , for S = A or B, and ∗ denotes complex conjugation. Written compactly, PS = USU
†
S .

Similarly, we can spell out q = UAU
†
B [Eq. (S8)] as

q =
∑

n,k,α,β

[uAn,k]αc
†
k,α |0〉 〈0| ck,β .[u

B
n,k]∗β (S23)

We need to calculate PAPAx qPB†x PB = UAU
†
AP

A
x UAU

†
BP

B†
x UBU

†
B . First, let us calculate

PAPAx =
∑
n,k,α

∣∣uAn,k+δk〉 [uAn,k+δk]∗α 〈0| ck,α

PB†x PB =
∑
n,k,α

c†k,α |0〉 [u
B
n,k+δk]∗α

〈
uBn,k+δk

∣∣ , (S24)

where
∣∣∣uSn,k〉 =

∑
α[uSn,k]αc

†
k,α |0〉. Using Eqs. S23 and S24, we have

PAPAx qPB†x PB =
∑

k,n,m,l

∑
α,β

∣∣uAn,k+δk〉 [uAn,k+δk]∗α[uAm,k]α[uBm,k]∗β [uBl,k+δk]β
〈
uBl,k+δk

∣∣
=

∑
k,n,m,l

∣∣uAn,k+δk〉 [FA,k]n,m[F †B,k]m,l
〈
uBl,k+δk

∣∣
=
∑
k,n,l

∣∣uAn,k+δk〉 [FA,kF
†
B,k]n,l

〈
uBl,k+δk

∣∣
=
∑
k,n,l

∣∣uAn,k〉 [FA,k−δkF
†
B,k−δk]n,l

〈
uBl,k
∣∣ . (S25)



5

The expression (S25) implies that P̄Ax P̄
B†
x = U†AP

A
x UAU

†
BP

B†
x UB takes the form

P̄Ax P̄
B†
x =


FA,k0F

†
B,k0

0 . . . 0

0 FA,k1F
†
B,k1

. . . 0
...

...
. . .

...

0 0 . . . FA,kL−1
F †B,kL−1

 . (S26)

Notice that the matrix is diagonal in k. Therefore, we have

Nx =
1

2πi
TrLog

(
P̄Ax P̄

B†
x

)
=

1

2πi

∑
k

TrLog
[
FA,kF

†
B,k

]
(S27)

which is identical to the expression for the winding number (S13).
In contrast, the invariant that protects the quantization of the dipole moment in chiral-symmetric insulators at

half-filling is

px = − 1

2π
ImLog[Det(U†occPxUocc)Det(P †1/2x )], (S28)

where Uocc is the subspace of occupied bands at half filling and Px =
∑
R,α |R,α〉 UD(R) 〈R,α| is the position operator

defined over the entire lattice [3]. The dipole moment invariant is quantized to px = 0 or 1/2 under chiral symmetry,
and is related to the winding number by the expression px = Nx/2 mod 1.

II. Generalizations of the winding number to higher-order topological systems with chiral symmetry

As stated in the Main Text, we generalize the invariant (S21) to 2D and 3D. In 2D, the invariant is

Nxy =
1

2πi
TrLog

(
Q̄AxyQ̄

B†
xy

)
∈ Z (S29)

where Q̄Sxy = U†SQ
S
xyUS for S = A,B, and QSxy is the sublattice quadrupole moment operator

QSxy =
∑

R,α∈S

|R, α〉Exp

(
−i

2πxy

LxLy

)
〈R, α| . (S30)

Similarly, in 3D the invariant is

Nxyz =
1

2πi
TrLog

(
ŌAxyzŌ

B†
xyz

)
∈ Z (S31)

where ŌSxyz = U†SO
S
xyzUS , for S = A,B, and OSxyz is the sublattice octupole moment operator

OSxyz =
∑

R,α∈S

|R, α〉Exp

(
−i

2πxyz

LxLyLz

)
〈R, α| , (S32)

A. Quantization of the real space invariants

The invariants (S21), (S29), and (S31) take the form

N =
1

2πi
TrLog

(
U†AMAUAU

†
BM

†
BUB

)
(S33)
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where MS (for S = A,B) is PSx , QSxy, or OSxyz in 1D, 2D, or 3D, respectively. Notice that since the matrices MS and
US are unitary, we have

Det(U†AMAUAU
†
BM

†
BUB) = Det(MAM

†
B) = 1, (S34)

where in the last step we use the fact that MA
x = MB

x , which is true because the two sublattices have (i) equal number
of degrees of freedom in each unit cell and (ii) the same number of unit cells, from which it follows that MA and MB

are identical. From (S34) it follows that tracing the logarithm of U†AMAUAU
†
BM

†
BUB in (S33) will necessarily have

to give a phase that is a multiple of 2πi, i.e., it will be of the form 2πiN , with N ∈ Z. This integer N is indeed the
topological invariant.

B. Real space invariants written as a Bott index

Starting again with Eq. S33, and performing a unitary transformation using UB of the matrix product on the
interior of the matrix logarithm, we can rewrite (S33) as

N =
1

2πi
TrLog

(
UBU

†
AMAUAU

†
BM

†
BUBU

†
B

)
. (S35)

Noting the definition of q = UAU
†
B and again that MA = MB = M are unitary (see discussion in previous section),

N =
1

2πi
TrLog

(
q−1MAqM

†
B

)
=

1

2πi
TrLog

(
q−1MqM−1

)
= Bott(q−1,M). (S36)

C. Topological protection of zero-dimensional states of first-order topolgy

Chiral-symmetric systems can also protect zero-dimensional states at topological defects. For a point defect in d
dimensions, q(k, r) in Eq. (S4) is parametrized by d momentum variables k and d − 1 position variables r, and the
number of protected states is given by the homotopy class π2d−1[U(N)] = Z into which q(k, r) falls [4], such as in the
2D Jackiw and Rossi lattice model for the protection of 0D topological states bound to vortices. Nontrivial homotopies
exist only in odd dimensional manifolds, and thus rule out, for example, the protection of 0D states at the corners of
2D crystals. In contrast, our invariants, Eqs. (5) and (6) of the Main Text (Eq. (S29) and (S31) here), allow for such
protection, and thus are of different nature than first-order topological indices based on homotopy classes.

III. The extended QTI model

In this section we describe in detail certain characteristics of the QTI model with long-range hopping terms (Eq.
(7), (8), and (9) in the Main Text). We show (A) how these phases are in general outside the framework of topological
quantum chemistry [5, 6], (B) how the phase diagram is modified when the horizontal hopping terms are different
from the vertical ones, (C) the support of the corner states, (D) the correspondence between the topological index
Nxy [Eq. (5) in the Main Text, or Eq. (S29) here] and the number and chiral charge of the corner states, (E) some
subtleties regarding how the phase diagrams in the Main Text were determined, and (F) the convergence of our results
with disorder with system size.

A. Symmetry representations of the topological phases

The extended QTI model has the Hamiltonian of Eq. (S4) with off-diagonal term

h(k) = hQTI(k) + CshSLR(k) + CdhDLR(k) (S37)

where hQTI(k), hSLR(k), and hDLR(k) are defined in Eqs. (7), (8), and (9) of the Main Text.
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Consider the case Cs = 1, Cd = 0. In that case, the Hamiltonian is C4v symmetric and supports bulk-obstructed
topological phases. At high-symmetry points (HSPs) and lines of the BZ, the representations of the elements of C4v

are given in Table S1. To capture more directly the topological protection due to crystalline symmetries, Table S1
also shows the symmetry indicator invariants, defined as

[Mj ] = #Mj −#Γj (S38)

where #Mj is the number of bands below the gap with C4 symmetry representations Mj = eiπ(2j−1)/4, for j = 1, 2, 3, 4,
at the M point of the BZ, and similarly for the Γ point.

phase irreps at Γ irreps at M ([M1], [M2], [M3], [M4])

Nxy = 0 {ei3π/4, e−i3π/4} {ei3π/4, e−i3π/4} (0,0,0,0)

Nxy = 1 {ei3π/4, e−i3π/4} {eiπ/4, e−iπ/4} (1,-1,-1,1)

Nxy = 4 {ei3π/4, e−i3π/4} {ei3π/4, e−i3π/4} (0,0,0,0)

TABLE S1. C4 symmetry representations and symmetry indicator invariants (S38) for the lowest two bands of Hamiltonian
(S37) at the C4 invariant points of the BZ Γ and M for all topological phases. At all C2-invariant points, the representations
are ±i. Similarly, at all Mx and My invariant lines, the representations are ±1. In both cases, those representations lead to
trivial symmetry indicator invariants for C2 and reflection symmetries.

A result worth noting from Table S1 is that, while the Nxy = 1 phase (i.e., the QTI nontrivial phase with qxy =
e/2) has nontrivial symmetry indicator invariants, the Nxy = 4 does not. Consequently, the topology of this last
phase cannot be captured by the theory of induction of representations and symmetry indicator invariants [5, 6].
Nevertheless, its nontrivial nature is evident in both the existence of a nonvanishing bulk invariant Nxy = 4 and the
existence of an equal number of topological zero-energy states at each corner [Fig. 1(d) of the Main Text and Fig. S2
here].

The representations due to C2 symmetry and reflection symmetries are equal at all HSPs of the BZ in all phases,
and thus have trivial symmetry indicator invariants.

B. Phase diagram for the ordered C2v symmetric system

In the interest of completeness, in Fig. S1 we show the phase diagram for a system which is C2v symmetric, with
wm,x = 3wm,y, wD = 0, and wm≥0 = 0.

𝑤𝑚,𝑥 = 3𝑤𝑚,𝑦

𝑤𝐷 = 0

𝑤1,𝑦/𝑣

𝑤
2,

𝑦/
𝑣

0

1

2

3

𝑁𝑥𝑦 = 0
𝑁𝑥𝑦 = 1

𝑁𝑥𝑦 = 4

𝑁 𝑥𝑦
 =

 2

𝑥-
ed

ge
 b
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dg
ap

 c
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s

𝑦-
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ap

 c
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s

1 2 30
𝑤1,𝑦/𝑣

𝑤
2,

𝑦/
𝑣

0

1

2

3

1 2 30

𝑞𝑥𝑦 = 1/2

𝑞𝑥𝑦 = 0

FIG. S1. Phase diagram of the chiral-symmetric second-order topological phase, Nxy (left), and the quadrupole phase qxy
(right), for a C2v symmetric system with open boundaries as a function of the hopping ratios, w1,y/v and w2,y/v, with
wm,x = 3wm,y and wD = 0. Phase transitions where the boundary band gap closes along the x edge are shown in green, while
those which close along the y edge are shown in cyan.
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C. Corner states and their support

In this section, we show the form and localization of two sets of corner states for phases indicated in the Main
Text. First, in Fig. S2, we show one possible choice of the four corner-localized states of the lattice considered in
Fig. 1 in the Main Text with Nxy = 4. As can be seen, the summation of the probability density functions of the four
orthogonal states equals that of the total set of four states in a single corner, as shown in the Main Text. Second, in
Fig. S3 we show the probability density function of the corner states of a Nxy = −1 phase from the system considered
in Fig. 2 in the Main Text. Notice that the corner states have support on the opposite sublattice as those in the
Nxy = 4 phase (Fig. S2) due to the reversal in the sign of the bulk index Nxy.

=+ + +

corner state 1 corner state 2 corner state 3 corner state 4 all 4 states

FIG. S2. Probability density functions of the four corner states at one of the corners of a Nxy = 4 phase (four left plots)
and cumulative PDF for all the four states (rightmost plot). Support at each sublattice is indicated by blue and red colors,
respectively. All corner states in the same corner have the same chiral charge and thus have support on only one sublattice. In
this simulation, v = 1, w1 = 2, w2 = 2, wD = 0.

FIG. S3. Probability density functions of all the corner states of a Nxy = −1 phase (4 states in total, one per corner). Support
at each sublattice is indicated by blue and red colors, respectively. In this simulation, v = 1, w1 = 1, w2 = 0.8, wD = 0.5.

D. Correspondence between Nxy, band gap closings, and corner states

To claim that the multipole chiral numbers introduced here are the topological invariant connected with the ap-
pearance of corner-localized modes across a band gap closing, one must show that all three phenomena are causally
connected. In other words, changes in either Nxy or the number (or type) of corner-localized modes necessarily imply
a change in other quantity, and moreover that these changes can only occur at a band gap closing.

To support this claim, Fig. S4(a-d) presents numerical simulations of all three of these quantities, Nxy, the distribu-
tion of states in energy, and the bulk band gap, for the long-range quadrupole topological insulator model considered
in Fig. 1(b) of the Main Text with fixed w1/v = 0.4. As can be seen, the closing of the bulk band gap at w2/v = 1
coincides with 8 states departing from each of the upper and lower bulk bands and becoming pinned at ε = 0. These
16 states in total are those corner-localized states shown in Fig. 1(d) of the Main Text, which are predicted to exist
as Nxy = 4 for w2/v > 1. The slight discrepancy between the change in Nxy and the closing of the bulk band gap
is due to finite system effects, where the topological invariant does not change until the bulk band gap is larger that
the approximate coupling strength between the corner states in adjacent corners.

In Fig. S4(e-i), we show this same correspondence for the quadrupole topological insulator with both long-range
straight and long-range diagonal hoppings considered in Fig. 2(b) of the Main Text with fixed w1/v = 0.8. As w2/v
is increased from 0 to 2, this system undergoes three separate phase transitions. The first transition, Nxy = 1→ −1
near w2/v = 0.4, occurs at a closing of the edge band gap, not the bulk band gap. This particular phase transition
also does not change the number of corner-localized states, as there is only one state localized to each corner in both
phases. Rather, across the phase transition, the corner states swap the sublattices on which they are supported. The
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FIG. S4. Correspondence between the appearance of zero energy states, change in the topological invariant Nxy, and the closing
of the bulk and edge band gaps for two of the systems considered in the Main Text in Figs. 1(b) and 2(a). (a) Copy of Fig. 1(b)
from the Main Text, red line indicates the choice of w1/v and w2/v in (b-d). (b) Number of states relative to their energy and
w2/v calculated with open boundary conditions. (c) Nxy as a function of w2/v calculated using open boundary conditions. (d)
Bulk band gap, ∆ε as a function of w2/v calculated using periodic boundary conditions. (e-h) Similar to (a-d), except for the
system in Fig. 2(a) of the Main Text. (i) Edge band gap calculated using a semi-open boundary, i.e. periodic in x, but open in
y. In all simulations of both systems, the system size was 80 × 80 unit cells.

other two phase transitions, Nxy = −1→ 0 and Nxy = 0→ 4, both occur when the bulk band gap closes, and result
in changes in the number of corner-localized states. Again, discrepancies between the change in Nxy from the band
gap closings are due to finite system size effects.
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E. Determination of the phase diagrams of the extended QTI model

There are some subtleties in how the phase diagrams shown in Figs. 1(b) and 2(a) of the Main Text are constructed
due to finite system size effects. As was shown in Fig. S4, computing the topological invariants Nxy in finite systems
causes the topological invariant not to change at exactly the same location where the band gap closes. Moreover, it is
not numerically feasible to calculate an entire 2D phase diagram at a reasonable sampling density even at the system
sizes shown in Fig. S4 (80 × 80 unit cells), due to the memory requirements necessary to calculate the full singular
value decomposition of H. In the definition of Nxy, every single singular value is necessary to achieve accurate results.

As such, the phase diagrams shown in Figs. 1b, 2a, and 2b are constructed by first finding closings in the bulk and
edge band structures, assuming the system is infinite in any non-open direction. Numerically, artifacts can appear
in the calculation of the band gap closings due to finite system sizes, as shown in Fig. S5, but simulations strongly
suggest that the phase diagrams converge to those shown in the Main Text in the thermodynamic limit. Then, we
calculate Nxy within each region at an ensemble of points using open boundaries in all directions and using large
system sizes. We also verify these calculations through direct calculation of Nxy across the entire 2D parameter space
but using smaller system sizes.

FIG. S5. Bulk band gaps of the C4v symmetric system considered in Fig. 1(b) of the Main Text calculated using periodic
boundary conditions with the spacing between adjacent points in the Brillouin zone being δk = 0.1 (left) and δk = 0.025
(right).

F. Finite system size effects in disordered systems

Another manifestation of the difficulties associated with finite system sizes is in calculating the topological invariant
and band gaps for disordered systems. In Fig. S6 we show the variation and (slow) convergence of both the topological
invariant, Nxy, as well as the bulk and edge band gaps as a function of system size. Here, the system contains some
disorder with a fixed strength, W/v = 4.8, with W defined in the Main Text. The underlying system possess C4v

symmetry, with W1/v = 1 and w2/v = 4, while the added disorder breaks all of the system’s symmetries (including
C4) except for chiral symmetry. Only a single realization of the disorder is shown here at each system size.

IV. Bulk and boundary energy gap closing at phase transitions

As shown in the Main Text, the phase transitions between phases of different multipole chiral numbers close the
gap at either the boundary or the bulk. This has to be the case since changing the winding number across the phase
transition goes hand in hand with the delocalization of the topological corner states, which necesitates extended gapless
channels. The existence of these gapless extended channels is necessary because the hybridization of topological states
away from zero energy can only occur by fusing pairs of topological states having opposite chiral charge, and such
pairs do not exist within any single corner.

This is illustrated in Fig. S7. At the phase transition critical points, the bulk (a) or edges (b,c) close the energy
gap, allowing the topological corner states to delocalize and hybridize away from zero energy. In (a), a C4 symmetric
lattice within a bulk-obstructed phase transition hybridizes corner states via bulk low energy channels, reducing the
bulk invariant by 1. In (b), a C4 symmetric boundary-obstructed phase transition hybridize the corner states via the
boundary, reducing the bulk invariant by 2. In (c), a C2 symmetric boundary obstructed transition reduces the bulk
invariant by 1.
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unit cells per side in a square lattice. The underlying system has C4v symmetry, while the added disorder breaks all of the
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FIG. S7. Schematics that illustrates the hybridization of topological corner states during phase transitions. Red and blue dots
represent topological corner states of opposite chiral charge. Topological corner states hybridize only if they have opposite
chiral charge and bulk (a) or edge (b,c) low energy channels are available for their delocalization.
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