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We show that lattices with higher-order topology can support corner-localized bound states in the continuum
(BICs). We propose a method for the direct identification of BICs in condensed matter settings and use
it to demonstrate the existence of BICs in a concrete lattice model. Although the onset for these states is
given by corner-induced filling anomalies in certain topological crystalline phases, additional symmetries are
required to protect the BICs from hybridizing with their degenerate bulk states. We demonstrate the protection
mechanism for BICs in this model and show how breaking this mechanism transforms the BICs into higher-order
topological resonances. Our work shows that topological states arising from the bulk-boundary correspondence
in topological phases are more robust than previously expected, expanding the search space for crystalline
topological phases to include those with boundary-localized BICs or resonances.
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Topological insulators exhibit robust quantized electro-
magnetic phenomena with exotic boundary manifestations. A
paradigmatic example is the family of topological insulators
with quantized dipole moments in their bulk and charge
fractionalization at their boundaries [1–4]. This property of
boundary charge fractionalization has recently been extended
through the discovery of quantized electric multipole insula-
tors [5,6] and, more generally, nth-order topological insulators
in n dimensions, all of which host corner fractional charges in
two and three dimensions (2D and 3D) [5–14].

Among higher-order topological insulators (HOTIs) with
fractional corner charges, those with additional chiral or
particle-hole symmetries also host robust corner-bound states
at midgap [5,7,15]. This property makes them attractive
because these topological states are easy to access experi-
mentally due to their spectral isolation and are maximally
confined [16–18]. Recently, it has also been shown that these
states present nontrivial braiding properties [19,20].

Requiring a bulk bandgap to find spectrally isolated topo-
logical states rules out potential materials and metamateri-
als which otherwise possess all of the necessary crystalline
symmetries to exhibit a higher-order topological phase. Yet,
in principle, spectral isolation is not necessary for the ex-
istence of localized bound states. Bound states that coexist
with degenerate extended ones, commonly known as bound
states in the continuum (BICs), have been found across a
variety of other physical systems, including quantum sys-
tems [21–24], water waves [25–30], acoustics [31–36], and
photonics [37–55].

Thus, the natural question to consider is, do topological
crystalline insulators with fractional corner charges still pos-
sess corner-localized states in the absence of a gap? And, if so,
what protects these states from hybridizing with bulk states
at the same energy? If such protected corner-localized modes
do exist, they are condensed matter realizations of BICs, as
they would localize to a zero-dimensional region of the system
despite the existence of the background of continuum states in
the bulk of the material.

Previous studies on BICs consider systems which are cou-
pled to scattering channels in the surrounding continuum that
satisfy radiative boundary conditions, rendering their Hamil-
tonians non-Hermitian by allowing energy to radiate away.
In contrast, condensed matter systems, being closed systems,
have presented challenges in even defining the appropriate
criteria for diagnosing the existence of BICs, which only a
few previous studies have attempted to address [18,56,57].

In this Rapid Communication, we challenge the notion that
boundary states of a topological phase will inevitably mix
with bulk bands that are degenerate in energy with them.
Instead, we show that boundary states can remain localized
despite being degenerate with bulk bands and, as such, con-
stitute condensed-matter realizations of BICs. To do so, we
draw inspiration from open systems to devise a method that
allows the identification of BICs in closed crystalline systems.
By adding fictitious non-Hermitian terms to the Hamiltonian
of the crystal, and in the correct limits, this method identi-
fies BICs in the original system as the isolated states with
only purely real energies in the complex energy spectrum.
Equipped with this tool, we study a concrete model of a 2D
HOTI without a bulk gap at zero energy and conclusively
demonstrate the existence of zero-energy corner-localized
BICs. We further show that the protection of BICs in this
lattice exists beyond separability [58,59] and depends only on
the preservation of crystalline and chiral symmetries. In the
absence of these symmetries (but still preserving those which
protect the HOTI phase), the BICs mix with their degenerate
bulk states to become higher-order topological resonances,
i.e., sets of states mostly localized at corners that nevertheless
also have a delocalized bulk component, and which constitute
the most general spectroscopic expression of a corner-filling
anomaly and corner fractional charge.

Lattice and its topological phases. The lattice we consider
is shown in Fig. 1(a) and consists of four sites per unit cell
with dimerized nearest-neighbor couplings of amplitude 1
(solid lines) and t (dashed lines) [60]. For the basis indicated
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FIG. 1. Characterization of the model lattice with closed and
open boundaries. (a) Lattice with Bloch Hamiltonian in Eq. (1).
(b) Bulk energy bands along high-symmetry lines of the Brillouin
zone for a lattice with periodic boundaries, for t = 0.5. (c) Density
of states when boundaries are open in both directions (n = 20, t =
0.15). The lower panels indicate the probability densities per band
(n = 5, t = 0.15).

by the numbers in Fig. 1(a), the Bloch Hamiltonian of the
system is

h(k) =
(

0 Q
Q† 0

)
, Q =

(
t + eikx t + eiky

t + e−iky t + e−ikx

)
. (1)

Its bulk energy bands are shown in Fig. 1(b). This Hamiltonian
has chiral symmetry, {�, h(k)} = 0, where � = σz ⊗ I2×2 is
the chiral operator, as well as C4v symmetry. As such, the
spectrum is symmetric around zero energy due to chiral sym-
metry (see Ref. [61]) and the two middle bands are twofold
degenerate at the � and M points of the Brillouin zone as
they adopt the two-dimensional irreducible representation of
C4v . Thus, due to the simultaneous presence of chiral and C4v

symmetries, the lattice will always have gapless bulk energy
bands at zero energy.

The presence of C4v symmetry in the lattice distinguishes
two topological phases. For |t | < 1, all the bands in the
lattice are in a topological phase, with different C4v (C2v)
representations at M (X and X′) relative to �. On the other
hand, for |t | > 1, all the bands are in a trivial phase, with equal
symmetry representations at all high-symmetry points (HSPs)
of the Brillouin zone. The symmetry representations at all
HSPs for both phases and their associated symmetry indicator
topological invariants are shown in Ref. [61]. At |t | = 1, the
phase transition occurs by closing both bulk gaps at X, X′, and
M, exchanging the representations at these three HSPs.

This model has been recently studied in the context of
charge fractionalization in higher-order topological crystalline
insulators [11]. In the topological phase, the Wannier centers

in all the bands localize at the maximal Wyckoff position
1b (corner of the unit cell), while in the trivial phase the
Wannier centers in all the bands are localized at the maximal
Wyckoff position 1a (center of the unit cell). The displace-
ment of the Wannier centers relative to the center of their
unit cells generates dipole moments per unit length quan-
tized by C2 symmetry to P = ( e

2 , e
2 ) in the first and fourth

bands of the lattice [11]. These quantized dipole moments
are accompanied by two edge energy bands (i.e., bands with
edge-localized states) spectrally isolated from the bulk energy
bands [Fig. 1(c)].

In addition to the dipole moments, the topological phase
has a corner-induced filling anomaly [11,62] with secondary
topological indices protected by C4 symmetry Q(4) = 1

4 , 1
2 , 1

4
for the first, middle, and upper band, respectively [11] (see
Ref. [61] for details), which capture the second-order topolog-
ical character of the bands. When boundaries are open in both
directions, the filling anomaly accounts for a reorganization in
the number of states across bands relative to when boundaries
are periodic [11]. This reorganization is evident in the lack of
homogeneity in the probability density functions shown in the
lower panels of Fig. 1(c). In particular, the central band shows
pronounced support over the corner unit cells and, as we will
see, are associated with the existence of corner BICs.

Bound states in the continuum. In electronic systems, a
nonzero filling anomaly indicates the fractionalization of the
corner charge, which is the robust physical manifestation of
higher-order nontrivial topology. A filling anomaly, however,
does not necessarily imply the existence of zero-energy cor-
ner states. In the presence of bulk states degenerate at zero
energy, as in this model, we would expect the corner and
bulk states to hybridize and form corner-localized resonances,
whose localization does not exponentially attenuate into the
bulk completely as they would have nonzero bulk support.
However, if states exponentially confined to corners exist as
stand-alone eigenstates of the system despite the existence of
degenerate bulk states, we will have corner-localized BICs.

We can directly test for the existence of corner BICs by
dividing the lattice into two regions: a small region that we
leave intact which we call the “system” S , comprising the four
square regions located at the corners of the lattice, each of size
ns × ns unit cells, and a large region called the “environment”
R, containing all of the unit cells not in S (inset of Fig. 2). To
the environment, we add the non-Hermitian on-site terms

hloss = −iκ
∑
r∈R

4∑
α=1

c†r,αcr,α, 0 < κ � 1, (2)

which amount to uniform losses in all the sites in the envi-
ronment. If we now inject an initial wave function ψ (0) into
the lattice, it will evolve as ψ (t ) = e−iHtψ (0) (from now on
we set h̄ = 1), where H is the Hamiltonian containing both the
Hermitian Hamiltonian, Eq. (1), and the non-Hermitian terms,
Eq. (2).

Due to the losses in the environment and the fact that all
sites in the lattice are coupled, we expect |ψ (t )|2 to decrease
over time. However, if corner-localized bound states exist in
the continuum of the lattice, and for system sizes larger than
the exponential confinement of the bound states, the losses of
a wave function injected at the bound state will be heavily
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FIG. 2. Probing the existence of bound states in the contin-
uum by adding the non-Hermitian term, Eq. (2), to the lattice in
Fig. 1(a) in the topological phase. (a) Complex energies. (b) Imag-
inary component of the energies as a function of system size (the
inset shows the shapes of the “system” and “environment” regions in
gray and purple, respectively). In (a) and (b), the red open circle is
the fourfold degenerate energy of the bound states in the continuum
with support at the corners, and the blue solid circles have eigenstates
with support in bulk or edges. (c), (d) Probability density function of
(c) the BICs and (d) the bulk states at zero real energy. In (c) and
(d), the area of the circles is proportional to the amplitude |ψ | of the
states. In (a), (c), and (d), n = 16 unit cells, ns = 3 unit cells. In (b),
n = 32. In all plots, κ = −5 × 10−2 and t = 0.25.

suppressed. This loss suppression manifests in the propagator
e−iHt by the existence of eigenstates of the Hamiltonian
with close-to-real energies and bound to the corners (more
precisely, the imaginary component of the complex energy
of the bound states should exponentially approach zero with
increasing system size).

This exact behavior of the energies of the system is ob-
served in Fig. 2, which shows corner-localized bound states
in the topological phase of our model. Figure 2(a) shows
the complex energies of the Hamiltonian H , in which four
energies are close to being purely real (red open circles),
while all of the other energies have a nonvanishing imagi-
nary component (solid blue circles). These four nearly real
eigenvalues are shown in Fig. 2(b) to approach zero imaginary
components exponentially fast with increasing system size.
As expected, the real energies have eigenstates bound to the
corners [Fig. 2(c)]. Crucially, these corner bound states are
embedded in the continuum of energies of the central bulk
energy band, as can be seen in the cumulative probability
density function of all eigenstates with zero real energy other
than the four corner bound states [Fig. 2(d)], which confirms
that the zero-energy corner states are BICs.

BICs as a signature of the topological phase. The
penetration of the BICs into the bulk is exponentially
suppressed as expected for topological states obeying

FIG. 3. Complex energies in the lattice as a function of the
hopping amplitude t . Shaded and nonshaded regions correspond to
the trivial and topological phases, respectively. (a) Real component
of the energies. (b) Imaginary component of the energies. Both
plots show the overlapped spectra of three configurations: periodic
boundaries in both directions (blue), periodic boundary only along
one direction (purple), and open boundaries in both directions (red).
Blue spectra are on top of purple spectra, both of which are on top of
red spectra. For all plots, n = 16, ns = 3, κ = −5 × 10−2.

a bulk-boundary correspondence [63]. Indeed, the cor-
ner BICs are a topological signature exclusive of the
topological phase and its associated filling anomaly. When
the filling anomaly vanishes, so do the BICs.

This is seen in Fig. 3, which shows the real and imaginary
energies as a function of the hopping amplitude t . In the real
spectrum [Fig. 3(a)] it is possible to see the appearance of
in-gap edge-localized states in the topological phase when
boundaries are open in one direction (purple bands) [64] (In
Fig. 3(a), the phase transitions at |t | = 1 are not visible due
to indirect gap closings in the bulk, which start to occur at
t = 0.5 [c.f. Fig. 1(b)]). Here, we focus on corner-bound states
because they do not have any spectral isolation at any point
in the real energy spectrum and their existence is far from
evident. Indeed, we saw that the bound states are embedded
in the continuum of the central energy band, and can be
separated only in complex energy when losses are added to
the environment R. Under this prescription, only the imagi-
nary component of the spectrum allows the identification of
the corner-bound states. These are shown as the red line at
zero imaginary energy in the topological phase (|t | < 1) in
Fig. 3(b). Notice the sharp transition of the BICs into lossy
states as the system approaches the phase transition point
(|t | = 1). In the trivial phase (|t | > 1), the BICs disappear as
the filling anomaly vanishes.

Symmetry protection of the BICs. Any spatial symmetry
that fixes the Wannier center of the topological phase to the
maximal Wyckoff position 1b, such as C2 or C4 symmetries,
protects the corner filling anomaly. However, additional sym-
metries are required to protect the BICs from mixing with
other degenerate bulk states to form resonances. In our model,
both C4v and chiral symmetries are required to protect the
BICs, as we will show now.

In the bulk, all states at zero energy take the two-
dimensional representation E of C4v (see Table S2 in Ref. [61]
for a definition of the representations). Degenerate to these are
the four corner states which, as a whole, form the representa-
tion A1 ⊕ B2 ⊕ E . The A1 and B2 corner states cannot mix
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FIG. 4. Breaking the symmetries that protect the BICs. Energy eigenvalues (left panels) and probability densities of the four states whose
energies have their imaginary components closest to zero (right panels) under perturbations that preserve certain symmetries: (a) C4v and chiral
symmetries, (b) only chiral symmetry, (c) only C4v symmetry, and (d) C4 and chiral symmetries. In the energy plots, the red open circles
correspond to the four energies with imaginary components closest to zero (possibly degenerate). Only (a) has BICs; (b), (c), and (d) have
corner-localized topological resonances. For all plots, n = 16, ns = 3, κ = −5 × 10−2, and t = 0.25.

with the E bulk states as they have incompatible symmetry
representations. However, the E corner and E bulk states
can in principle mix. Consider the combinations of corner
states |C+〉 = 1

2 (1,−1, i,−i)T and |C−〉 = 1
2 (1,−1,−i, i)T

that form a basis for the E irreducible representation of corner
states, where the entries correspond to the corner states local-
ized at the top right, bottom left, top left, and bottom right cor-
ners, respectively. Since |C±〉 form a basis for a 2D irrep, they
are degenerate in energy as long as C4v is preserved. This basis
is convenient because, in the presence of chiral symmetry,
|C±〉 are chiral partners of each other, i.e., |C+〉 = �|C−〉 and
vice versa, from which it follows that these two states should
have energies of opposite sign, ε,−ε (see Ref. [61]). Thus,
under C4v and chiral symmetry, |C±〉 must both have ε = 0.
By the same argument, all bulk states that fall into the E
representation of C4v must have ε = 0 under chiral symmetry.

Now, consider a possible hybridization of the corner states
|C±〉 and the bulk states |B±〉 (that form the E represen-
tations of C4v) into |ψ1〉 = α(|B+〉 + β|C±〉), where α =
1/

√
1 + |β|2. Due to C4v , there is another state |ψ2〉 =

α(|B−〉 + β|C∓〉) degenerate to |ψ1〉. The crucial observa-
tion is that |ψ1〉 and |ψ2〉 are chiral partners of each other,
and as such these hybridized states have zero energy. Thus,

the states |ψ1,2〉 are merely arbitrary choices in the highly
degenerate subspace of zero energy and do not represent a
physical unbreakable hybridization into resonant eigenstates.
The prescription for the detection of BICs that we propose
here is then sufficient to isolate the corner BICs from the rest
of degenerate bulk states.

In the absence of either chiral or C4v symmetry, the hy-
bridized states |ψ1,2〉 are not pinned to zero energy and are
thus free to become eigenstates of the system not susceptible
to being separated into their corner and bulk constituents
(Fig. 4). The inseparable hybridized states, having support
in both the corner and the bulk, will eventually attenuate in
the presence of loss in the environment R, which manifests
by a nonzero imaginary component of their energies. Some
of these states are in principle long-lived as they may have
more support in the corners rather than in the bulk, and thus
constitute resonances of the system. In Fig. 4 we show the
conversion of BICs into resonances as we add perturbations to
the original Hamiltonian in Eq. (1) that break the simultaneous
C4v and chiral symmetries down to only specific indicated
symmetries. The perturbations consist of random hopping
terms up to next-nearest-neighbor unit cells that nevertheless
preserve the desired symmetries, as detailed in Ref. [61].
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In previous studies, one of the possible mechanisms for
creating BICs has been attributed to the separability of the
Hamiltonian into kx and ky dependent parts, i.e., h(kx, ky) =
hx(kx ) + hy(ky) [58,59]. Here, we show that BICs are pro-
tected beyond separability. Specifically, Fig. 4(a) has added
perturbations that put the overall Hamiltonian in a nonsepa-
rable form while still hosting BICs due to the preservation of
C4v and chiral symmetries. We also notice that in all cases in
Fig. 4 the filling anomaly is preserved and in Figs. 4(a), 4(c)
and 4(d), the Wannier centers are still fixed by symmetry
to the maximal Wyckoff position 1b. Thus, here we verify
that additional symmetries to those required to protect the
topological phase and its filling anomaly are required to
protect BICs. Topological resonances, however, will generally
exist for the symmetries that protect the topological phase,
with a quality factor inversely proportional to the amplitude
of the imaginary component of their energies. The recent work
of Ref. [57] introduces unrestricted (i.e., symmetry-breaking)

noise to their system. Thus, we expect that their numerical
method for finding corner-localized states is incapable of
properly distinguishing BICs from resonances.

Our demonstration that corner-localized modes exist in
HOTIs even in the absence of a bulk bandgap expands the
search space (design space) for topological materials (topo-
logical metamaterials). Moreover, the unique property of co-
existence between BICs and bulk states offers an alternative
playground for possible applications of topological phenom-
ena.
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