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Probing topology in nonlinear topological materials using numerical K-theory
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Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the
discovery of new physics due to interparticle interactions, and may have applications in photonic devices
such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous
attempts to classify the topology of nonlinear systems have required significant approximations that must be
tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear
materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical
K-theoretic method called the spectral localizer, which leverages a real-space perspective of a system to
define local topological markers and a local measure of topological protection. Our nonlinear spectral localizer
framework yields a quantitative definition of topologically nontrivial nonlinear modes that are distinguished by
the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral
localizer can be used to understand a system’s topological dynamics, i.e., the time evolution of nonlinearly
induced topological domains within a system. We anticipate that this framework will enable the discovery and
development of novel topological systems across a broad range of nonlinear materials.
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I. INTRODUCTION

Over the past two decades, the discovery of topologi-
cal materials has revolutionized a broad range of materials
research through the prediction and observation of fundamen-
tally new classes of states that are robust against defects and
imperfections [1–4]. In noninteracting systems, the possible
types of topology that a material can exhibit are determined by
its discrete symmetries (or lack thereof), yielding a periodic
table of material topology rooted in the ten Altland-Zirnbauer
classes [5–8]. This topological classification framework has
subsequently been expanded to include crystalline symme-
tries [9] and semimetals [10,11]. For all of these cases, a
noninteracting material’s topology is traditionally determined
through the calculation of invariants built from the system’s
band structure and Bloch eigenstates, and thus the topological
invariants are global properties of the bulk material.

However, in many systems, interactions are both unavoid-
able and potentially highly desirable, as they can result in
emergent phenomena [1,2,4,12]. For example, topologically
ordered phases of matter can support quasiparticles with
fractional charge and anyonic statistics [13,14]. More re-
cently, studies of interacting bosons in the mean-field limit
have led to the discovery of new physics [15], such as the
appearance of topological bulk [16–24] and edge solitons
[25–27], the observation of nonlinearly induced topologi-
cal phase transitions [28–30], and the concept of multiwave
mixing with topological states [31–34]. Such bosonic sys-
tems are usually described using the nonlinear Schrödinger
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equation, a Gross-Pitaevskii–type equation [35,36], in which
the nonlinear response is parametrized by the strength of
the interparticle interactions and mediated by an ambient
medium such as a Kerr medium in photonic systems [37] or
with nonlinear building-block elements in acoustic platforms
[38,39]. Unfortunately, nonlinearities present a substantial
challenge for our understanding of material topology as they
demand a shift in perspective. Whereas noninteracting (linear)
systems are topologically classified using only a system’s
single-particle Hamiltonian, classifying the topology of a
nonlinear system requires knowing its occupation. Moreover,
as nonlinear effects are intrinsically local, they can break
the fundamental assumption of band theory (which demands
spatial periodicity). Altogether, these challenges have so far
prohibited the development of a broadly applicable theory
for classifying the topology of nonlinear systems and their
possible occupations.

In this paper, we present a general framework for prob-
ing the topology of nonlinear materials described by a
Gross-Pitaevskii–type equation using numerical K-theory.
Our framework classifies a system’s topology in real space us-
ing local markers, and as such directly accommodates spatial
inhomogeneities in the system’s occupation and the mate-
rial’s response. To do so, we first determine the system’s
Hamiltonian accounting for its occupation, and then com-
bine it with the system’s position operators using a Clifford
representation. This yields the system’s spectral localizer,
which defines local markers for all ten Altland-Zirnbauer
classes in any physical dimension, as well as a local mea-
sure of topological protection [40]. Using this classification
framework, we develop a rigorous definition of topolog-
ical nonlinear modes distinguished by the appearance of
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nonlinearity-induced topological interfaces surrounding them;
the topological robustness of these nonlinear states guaran-
tees their existence over some range of finite perturbations
(i.e., a solution to the nonlinear Hamiltonian is guaranteed).
Moreover, our framework allows for probing topological dy-
namics, and one can numerically observe the transport of a
nonlinearity-induced topological phase with the propagation
of the nonlinear state that creates it. Overall, our classification
framework provides a general approach for the characteri-
zation of stationary and dynamical topological phenomena
in nonlinear materials in any discrete symmetry class and
in any physical dimension. We anticipate that our nonlin-
ear spectral localizer framework will prove useful for the
design and development of a broad range of novel non-
linear topological phenomena such as in pump-probe-like
systems and topological frequency combs, which require
simultaneous local information at different positions and
energies.

II. SPECTRAL LOCALIZER FOR NONLINEAR
MATERIALS

In the past few years, a local, real-space approach for
classifying noninteracting topological materials has been
developed based on recent discoveries from the study of
(possibly real, possibly graded) C∗-algebras [40–42]. The
overarching idea of this approach is to combine a system’s
single-particle Hamiltonian with information about its real-
space structure to form a single Hermitian composite operator
called the spectral localizer. The system’s topology at a spec-
ified location and energy can then be determined using the
original invariants proposed by Kitaev for zero-dimensional
(0D) and one-dimensional (1D) systems (i.e., the partitioning
a system’s spectrum about some gap for Z invariants, or signs
of determinants or signs of Pfaffians of some portion of a
system’s Hamiltonian for Z2 invariants) [43], but applied to
the spectral localizer instead of the system’s Hamiltonian.
In other words, the spectral localizer approach is perform-
ing dimensional reduction consistent with Bott periodicity,
such that the invariants of the fictitious dimensionally re-
duced system determine the local topology of the original
system.

Our general framework for classifying the topology of
nonlinear systems is built on the spectral localizer. The
key advantage of this approach is that as the spectral lo-
calizer incorporates information about a system’s spatial
configuration to produce a real-space theory of material
topology, it can be augmented to include the local nature
of nonlinear effects. Consider a d-dimensional nonlinear
Hermitian system characterized by the nonlinear eigenvalue
equation

HNL(ψNL)ψNL = ENLψNL, (1)

with ψNL and ENL being the nonlinear eigenmode and its asso-
ciated nonlinear eigenenergy, respectively. For such a system,
the nonlinear spectral localizer Lλ is a Hermitian matrix that
combines the system’s nonlinear Hamiltonian accounting for
its current occupation ψ with its position operators X1, . . . , Xd

using a Clifford representation,

Lλ=(x1,...,xd ,E )(X1, . . . , Xd , HNL(ψ))

=
d∑

j=1

κ (Xj − x jI ) ⊗ � j + [HNL(ψ) − EI] ⊗ �d+1. (2)

Here, �1, . . . , �d+1 form a (d + 1)-dimensional Clifford rep-
resentation and satisfy �

†
j = � j , �2

j = I , and � j�l = −�l� j

for j �= l , while I is the identity matrix. In a typical tight-
binding basis, the position matrices Xj are diagonal matrices
where the nth entry corresponds to the jth real-space coordi-
nate (x(n)

1 , . . . , x(n)
j , . . . , x(n)

d ) of the nth lattice site, namely,

Xj =

⎛
⎜⎜⎝

. . .

x(n)
j

. . .

⎞
⎟⎟⎠. (3)

Finally, in Eq. (2), λ = (x1, . . . , xd , E ) is to be seen as an
input for locally probing the topology in real space at the
spatial coordinate (x1, . . . , xd ) and energy E , and κ is a hy-
perparameter chosen to make the units consistent between
the position and Hamiltonian matrices. The hyperparameter
κ is also set to balance the spectral emphasis on the system’s
position information relative to its Hamiltonian, and has been
proven in noninteracting systems to have a broad range of
applicability in topological insulators [41]. Moreover, κ has
been numerically observed to have utility beyond this limit
[40,44,45].

Unlike other approaches to material topology that rely
upon knowing a system’s exact spectrum and associated
single-particle energy eigenstates, the nonlinear spectral lo-
calizer is a multioperator pseudospectral method, and returns
information about a system’s approximate joint spectrum
across the noncommuting operators X1, . . . , Xd , and HNL(ψ).
For a given choice of λ = (x1, . . . , xd , E ), the spectrum of the
nonlinear spectral localizer σ (Lλ) not only returns a measure
of whether the system linearized about its current occupa-
tion supports a state φ approximately localized across all
of X1, . . . , Xd , and HNL(ψ) [i.e., such that Xjφ ≈ x jφ and
HNL(ψ)φ ≈ Eφ), but also information about how large of a
perturbation is necessary to relocate one of the linearized sys-
tem’s states to be approximately localized at (x1, . . . , xd , E ).
The measure of this required perturbation is given by the
smallest singular value of Lλ, i.e.,

μC
λ(X1, . . . , Xd , HNL(ψ))

= min[|σ (Lλ(X1, . . . , Xd , HNL(ψ)))|]. (4)

Small values of μC
λ indicate the existence of such a joint ap-

proximate eigenvector for X1, . . . , Xd , and HNL(ψ) localized
near λ, while large values of μC

λ indicate that the system does
not exhibit such a state. As such, μC

λ can be thought of as a
local band gap. In Eq. (4), the superscript C denotes Clifford,
as the system’s Clifford ε-pseudospectrum is defined by those
λ where μC

λ � ε [40,46].
By directly incorporating the nonlinear system’s current

occupation, the nonlinear spectral localizer can be used to
classify the topology of systems in any discrete symmetry
class (i.e., the ten Altland-Zirnbauer classes [1]) and any
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physical dimension by leveraging the corresponding local
markers known for noninteracting systems [40]. Here, we
focus on systems with the possibility of being Chern insu-
lators (i.e., 2D class A systems), as the preponderance of
studies of nonlinear topological materials have considered
such systems [16,17,19–22,25,27,32,33]. To assess whether
a nonlinear two-dimensional (2D) system possesses spatial
regions and energy gaps where it is a Chern insulator using the
spectral localizer, the Pauli spin matrices can be used as the
Clifford representation in Eq. (2), allowing it to be rewritten
as

Lλ=(x,y,E )(X,Y, HNL(ψ))

=
(

HNL(ψ) − EI κ (X − xI ) − iκ (Y − yI )
κ (X − xI ) + iκ (Y − yI ) −[HNL(ψ) − EI]

)
.

(5)

Then, the system’s local topology can be classified using the
index

CL
(x,y,E )(X,Y, HNL(ψ)) = 1

2 sig[L(x,y,E )(X,Y, HNL(ψ))], (6)

where sig(M ) is the signature of the matrix M, i.e., its number
of positive eigenvalues minus its number of negative ones.
Intuitively, the spectral localizer is projecting the 2D system
into 0D via the choice of λ = (x, y, E ), with the “Hamilto-
nian” of this dimensionally reduced system being Lλ. Then,
the topology of the effective 0D system is determined through
the partitioning of Lλ’s spectrum about zero. This definition
corresponds to a local Chern marker because it does not de-
pend on the system possessing any discrete symmetries, and it
is provably equivalent to the global Chern number for infinite,
linear, crystalline systems [42].

Together, the spectral localizer’s local gap, Eq. (4), and lo-
cal topological markers, such as Eq. (6), form a consistent and
complete picture of material topology. In particular, the mea-
sure of a system’s topological robustness at a given location
and energy is μC

λ because the spectral localizer’s local markers
are all well behaved functions of its spectrum, and cannot
change without μC

λ → 0. For example, for Lλ’s signature to
change, one of its eigenvalues must cross 0, at which point
μC
λ = 0. Likewise, locations where μC

λ = 0 indicate interfaces
where a system’s local topology can change, and also require
the system to exhibit a state approximately localized at λ, thus
realizing bulk-boundary correspondence.

As topological protection in the nonlinear spectral localizer
is determined by its smallest singular value, and as a Her-
mitian operator it has Lipschitz continuous singular values,
the spectral localizer approach can be used to make rigorous
predictions about the effects of a perturbation or defect. If
δH is a Hermitian perturbation distribution to the underlying
system and w is the perturbation strength, then the perturbed
nonlinear Hamiltonian is

Hpert(w) = HNL(ψw ) + wδH, (7)

where ψw is the nonlinear eigenvector of Hpert(w), and the
change in the full Hamiltonian accounting for the perturba-
tion’s effects on the system’s nonlinear eigenmode is

�H (w) = Hpert(w) − Hpert(0). (8)

Weyl’s perturbation theorem [47] guarantees that the change
of the eigenvalues of a Hermitian matrix A relative to the
eigenvalues of another Hermitian matrix B is bounded by
‖A − B‖, i.e., the largest singular value of A − B. Therefore,
when a perturbation is added to a system, the resulting change
to its local gap is bounded (see also Ref. [40], Lemma 7.2, for
the linear case),∣∣μC

λ (X, Hpert(w)) − μC
λ (X, Hpert(0))

∣∣
� ‖Lλ(X, Hpert(w)) − Lλ(X, Hpert(0))‖, (9)

where X = (X1, . . . , Xd ). Moreover, as the perturbation is
only changing the system’s Hamiltonian, and not its position
operators,

‖Lλ(X, Hpert(w))−Lλ(X, Hpert(0))‖ = ‖Hpert(w) − Hpert(0)‖.
(10)

Thus, the change in the local gap is bounded by the change of
the nonlinear Hamiltonian,∣∣μC

λ (X, Hpert(w)) − μC
λ (X, Hpert(0))

∣∣ � ‖�H (w)‖. (11)

Altogether, this argument proves that a perturbation cannot
change the system’s topology at a given location and en-
ergy if the change in the nonlinear Hamiltonian ‖�H (w)‖
is less than the local gap of the unperturbed nonlinear sys-
tem μC

λ (X, Hpert(0)), as the minimum perturbation necessary
to force the system to a topological phase transition has
μC

λ (X, Hpert(w)) = 0. In other words, for a nonlinear system
that may be a local Chern insulator,

‖�H (w)‖ � μC
λ (X,Y, Hpert(0))

⇒ CL
λ(X,Y, Hpert(w)) = CL

λ(X,Y, Hpert(0)). (12)

As such, given knowledge of an ordered system’s spectral
localizer, one can immediately determine whether a given
perturbation can cause a topological transition through a nu-
merically efficient calculation. Note that the operator norm
(induced by the �2 norm and equal to the largest singular
value) of the perturbation ‖�H (w)‖ does not grow with the
system’s size, but quickly saturates as all the possible pertur-
bation configurations are realized.

This argument of topological protection also guarantees
that the topology of a nonlinear system can be used in a
pump-probe configuration; any sufficiently weak probe can
be considered as a perturbation to a strong pump occupa-
tion present in the system, and this will not immediately
change the system’s local topology. In particular, this allows
for any nonlinearly induced topological interfaces to sup-
port weak boundary-localized states that must exist due to
bulk-boundary correspondence. However, the introduction of
a weak probe signal can yield a decay time for the system’s
topology, as the interaction between the two excitations can
slowly cause the pump to delocalize, eventually dissipating
the system’s nonlinearly induced topology.

A. Topological nonlinear states

Using the nonlinear spectral localizer, we can construct a
rigorous definition for topological nonlinear states: A nonlin-
ear eigenstate ψNL is topological if it creates a change in the
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system’s local topology at its nonlinear eigenenergy relative
to the system’s topology in the absence of that state. The
topological robustness of the nonlinear mode is then related
to the nonlinearly induced topological interface formed, and
its existence is guaranteed as long as

‖�H (w)‖ � μC
NL, (13)

where

μC
NL = max

x

[
μC

(x,ENL )(X, HNL(ψNL))
]

(14)

is the nonlinear localizer gap, namely, the maximum localizer
gap inside the newly created topological domain. Physically,
the robustness of the topological nonlinear mode can be inter-
preted as a guarantee to find a solution curve of the topological
nonlinear mode over finite perturbation strength w as long as
the system perturbation is too weak to close the nonlinearly
induced local gap.

Probing the occupied nonlinear system’s topology at an
energy E �= ENL can also provide useful information. In par-
ticular, the presence of a nonlinear mode can change the
topology of the system over a range of energies, and thus may
have use in a pump-probe-like setting. For example, a strong
pump in a nonlinear photonic system may induce the appear-
ance of topological interfaces at a wide range of frequencies,
allowing for a weak signal at a different frequency from the
pump to be routed to a particular outcoupling channel.

B. Numerical K-theory

One of the main benefits of the real-space spectral lo-
calizer approach is that it yields relatively simple formulas
for a system’s topological invariants and protection. This is
because the underlying mathematics that determine the invari-
ants of the dimensionally reduced system in 0D or 1D can
be understood using only elementary homotopy theory [e.g.,
the fact that the classic group GL(n,R) has two connected
components that are differentiated by the sign of the determi-
nant]. The full machinery of K-theory in the spectral localizer
approach is hidden within the theorems that dictate how it per-
forms dimensional reduction consistent with Bott periodicity,
and is what guarantees that the topology of the dimensionally
reduced effective system determines the topology of the orig-
inal physical system. One consequence of this mathematical
simplicity is that it results in numerically tractable formulas
to determine a material’s topology in any of the discrete sym-
metry classes and in any physical dimension. In particular, by
avoiding spectral flattening operations, the spectral localizer
applied to sparse matrices remains sparse. This approach is
in stark contrast to typical formulas derived using standard
K-theory, which do not lend themselves to simple numerical
implementations, nor efficient algorithms. As such, we refer
to the present approach as numerical K-theory.

More broadly, numerical K-theory is the study of numeri-
cal algorithms to compute global or local K-theory invariants
for matrix models of physical systems [48–51]. Here we
use the term numerical in the applied-math sense of algo-
rithms that use floating-point arithmetic. Moreover, numerical
K-theory methods have been successfully applied to large
systems [52], including real systems described by differen-
tial equations [45]. Due to their relative simplicity, these

methods can also inspire the development of novel experimen-
tal techniques allowing topological invariants derived through
a numerical K-theory approach to be physically observed
[53].

III. PROBING TOPOLOGICAL PROFILE IN
NONLINEAR SYSTEMS

To illustrate the spectral localizer framework for classi-
fying topology in nonlinear materials, we consider a system
that can exhibit Chern insulating phases (i.e., a 2D class A
system in the Altland-Zirnbauer classes [5]). In particular, we
study a finite nonlinear Haldane lattice [54] with the geometry
shown in Fig. 1(a) and with open boundary conditions. The
lattice is characterized by a (next-)nearest-neighbor coupling
t1 (t2/t1 = 0.5), an inversion-symmetry-breaking onsite term
set here to zero m/t1 = 0, a time-reversal-symmetry-breaking
Haldane flux φ = π/2, and an onsite Kerr term g|ψn|2 with g
being the nonlinear coefficient and |ψn|2 being the intensity at
the site n. The nonlinear Hamiltonian matrix HNL then reads
as

[HNL(ψ)]nl = [H0]nl + g|ψn|2δnl , (15)

with H0 the linear Hamiltonian matrix for the Haldane lattice,
and δnl the Kronecker delta function.

In the absence of any occupation, the linear lattice (g = 0)
is in a topologically nontrivial phase because it satisfies the
condition |m/t2| < 3

√
3| sin(φ)| [54], and its bulk band gap

has a Chern number C = 1. Figures 1(b) and 1(c) show the
local Chern number [Eq. (6)] in position and energy CL

(x,y,E ),
directly revealing the local topological picture of this lattice
[Fig. 1(a)]. As expected from topological band theory, one
can see a nontrivial local Chern number CL = 1 inside the
lattice region, delimited by the black dotted line, for choices
of E within the system’s bulk band gap [Fig. 1(b)]. Moreover,
the local Chern number can also resolve the spectral extent of
the system’s nontrivial topology. Indeed, Fig. 1(c) shows the
local Chern number at a fixed y-coordinate position [see blue
dashed line in Fig. 1(b)], demonstrating in accordance to band
theory that the system possesses a topological nontrivial en-
ergy range delimited by the bulk band gap found from a stripe
geometry [see black dotted lines in Fig. 1(b)]. Figure 1(d)
shows the localizer’s spectrum σ (L(x,y,E ) ) as x is varied across
the lattice for given (y, E ) = (y0, E0) [see blue dashed line in
Figs. 1(b) and 1(c)]. This spectral flow demonstrates that, as
the position is varied across the lattice’s boundary, the local
topological marker changes from trivial to nontrivial (or in
reverse), which simultaneously forces the local gap to close,
indicating the presence of a boundary-localized state.

A. Topological nonlinear modes

With the inclusion of the model system’s nonlinear re-
sponse (g �= 0), the model can be used to illustrate and
distinguish nonlinear modes that are topological and trivial.
To do so, we consider two different nonlinear modes and
corresponding nonlinear eigenenergies that are found by self-
consistently solving Eq. (1) (see Appendix). In each case, the
nonlinear Hamiltonian accounting for the system’s occupa-
tion H (ψNL) is then used to calculate the spectral localizer
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FIG. 1. Topological nonlinear modes. (a) Schematic of the geometry of the Haldane (honeycomb) lattice considered. Local Chern number
(b) CL

(x,y,E0 ) and (c) CL
(x,y0,E ), where the white (red) regions stand for CL = 0 (CL = 1). The blue dashed lines in (b) and (c) correspond to y0

and E0, respectively. The black dotted line in (b) is a guide to the eye for the finite geometry of the lattice shown in (a). The black dotted line
in (c) illustrates the bulk band gap for a stripe geometry along the x direction. (d) Localizer spectrum σ (Lλ=(x,y0,E0 ) ) and local Chern number
CL

(x,y0,E0 ) along the blue dashed line in (b). (e) Field profile of the topological nontrivial nonlinear mode |ψNL|. [(f)–(h)] Same as [(b)–(d)], but
for the topological nontrivial nonlinear mode in (e) and with E0 being its corresponding nonlinear eigenenergy ENL. [(i)–(l)] Same as [(e)–(h)],
except this is for a topological trivial nonlinear mode. The parameters for the nonlinear Haldane model are chosen such that the lattice constant
a = 1 [a.u.], the (next-)nearest-neighbor coupling t1 = 1 [a.u.] (t2/t1 = 1

2 ), inversion-symmetry-breaking mass term m/t1 = 0, Haldane phase
φ = π/2, and g = −2, and κ = 2[t1/a] has been set for all the localizer-related calculations. �E stands for the bulk band gap at the honeycomb
lattice’s high-symmetry K point, �E = |m − 3

√
3t2 sin(φ)|.

[Eq. (5)] and the associated local topological invariant and
local gap at the nonlinear energy ENL. For the case of the
nonlinear mode and corresponding local gap and local in-
variant shown in Figs. 1(e)–1(h), the presence of the state in
the system yields a change in the local topology where the
state is localized and at its nonlinear eigenenergy, resulting
in a nonlinearly induced topological interface. As such, this
is a topological nonlinear mode. In contrast, the local gap
and local invariant for the nonlinear mode in Figs. 1(i)–1(l)
do not change the system’s local topology at its nonlinear
eigenenergy, and as such is a trivial nonlinear mode.

Probing the occupied nonlinear system’s topology at other
energies provides additional insight, as shown in Fig. 1(g).
For some x positions near the nonlinear mode’s center, the

nonlinear mode shifts the energy range with nontrivial local
topology to be lower, creating a trivial energy range inside the
linear system’s bulk band gap and a nontrivial energy range
deep within the linear system’s lower band. Therefore, at the
(y, E ) coordinates given by the blue dashed lines in Figs. 1(f)
and 1(g), the localizer spectrum crosses the zero eigenvalue
several times [Fig. 1(h)]. To observe the shifted energy range
due to the nonlinear mode’s presence in the system, one would
need to use a pump-probe-type experiment, pumping the sys-
tem to create the intense, stationary nonlinear mode, and then
using a weak signal at a different energy to probe the system
and observe the nonlinearly induced topological interface.

We note that it may be possible for a trivial nonlinear
mode, which does not induce a topological interface at its
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FIG. 2. Topological robustness of nonlinear modes. (a) Zoom-in
of Fig. 1(h) near the center of the nonlinear mode. μC and μC

NL

correspond to the linear and nonlinear localizer gaps. (b) Norm of
the maximum change of matrix Hamiltonian ‖�H (wc )‖, at the criti-
cal perturbation strength wc, over several perturbation configuration
runs. (c), (d) Evolution of the nonlinear energy ENL and the change of
matrix Hamiltonian ‖�H (w)‖, respectively, against the perturbation
strength w for a given perturbation configuration. The vertical black
dashed lines depict the critical perturbation strength wc for the given
perturbation configuration. The parameters are the same as in Fig. 1,
and w f = 0.3�E .

own nonlinear eigenenergy, to nevertheless shift the energy
range of a system’s topology similar to what is numerically
observed in Fig. 1(g). Thus, a trivial nonlinear mode may still
have topologically nontrivial effects on a system.

B. Robustness of topological nonlinear modes

The robustness of a topological nonlinear mode is char-
acterized by its nonlinear localizer gap corresponding to its
nonlinearly induced topological interface [Eq. (13)]. As dis-
cussed in Sec. II, there are two types of local gaps that can
be defined for nonlinear modes μC and μC

NL [Fig. 2(a)], which
stem from different properties of the system. The former (μC)
is an indication of the topological robustness of the under-
lying linear lattice, whereas the the latter (μC

NL) indicates the
nonlinear topological robustness associated with the nonlinear
response due to the system’s occupation.

The topological protection of a nonlinear mode can be
interpreted as a guarantee to find its solution curve over
a finite range of disorder strengths w [Eq. (7)] as long
as Eq. (13) is satisfied. To demonstrate how the local gap
protects the existence of a nonlinear solution, we begin
with the unperturbed topological nonlinear mode ψ0, ob-
tained here in Fig. 1(e), and calculate its solution curve
using our nonlinear solver as we turn on the perturba-
tion strength w = 0 → w f (see Appendix). Each point
on the solution curve is calculated using the previous
point as an initial guess (see Supplemental Material [55]
for additional information). During this procedure, either
w = w f is reached; or after some finite value w = wc, the

nonlinear solver is not able to continue the solution curve,
namely, the solver is not converging given the previous
nonlinear solution with w < w f used as an initial guess.
As we simulate an ensemble of hundreds of perturbation
configurations that include onsite masslike, t1-like, and t2-
like perturbation terms drawn from a uniform distribution
[−w/2,w/2], we fail to converge to a solution only when
‖�H (wc)‖ > μC

NL [Fig. 2(b)]. Figures 2(c) and 2(d) give
an example over a single perturbation configuration of the
solution curve in the (w, ENL) and (w, ‖�H (w)‖) spaces,
respectively. Altogether, these simulations justify the claim
that the topological robustness of a nonlinear mode guarantees
the existence of a similar nonlinear eigenstate of the perturbed
system.

IV. PROBING TOPOLOGICAL DYNAMICS IN
NONLINEAR SYSTEMS

The spectral localizer is capable of directly resolving
topological dynamics of nonlinear systems. As the non-
linear spectral localizer is a pseudospectral approach that
simultaneously accounts for both the system’s spatial and
energy information, its local markers can assess the system’s
topology while accurately incorporating any spatial inhomo-
geneities in the nonlinear system’s occupation during the
system’s time evolution. In contrast, it is not possible to ac-
curately assess such topological dynamics using band theory,
as band theory requires assuming that the nonlinear system’s
occupation is effectively infinite so that the full system is
periodic, resulting in a spatial averaging of the system’s evo-
lution. Moreover, any complete theory of nonlinear topology
must include a mechanism to resolve topological dynamics,
as nonlinear systems are famously known to exhibit a wide
range of dynamical behaviors. For example, depending on the
parameters of the system and the initial conditions, a nonlinear
system’s dynamics can cross a bifurcation point where its
evolution can qualitatively change to become stable, periodic,
or even chaotic if slightly perturbed [56].

To illuminate how the nonlinear spectral localizer can be
used to ascertain a system’s nonlinear topological dynam-
ics, we consider the general nonlinear rate equation with a
Gaussian source sin(t ) coupled to the system with coupling
coefficient ηS at the nSth site:

i
d

dt
ψn =

N∑
l

[HNL(ψ)]nlψl + ηSsinδl,nS , (16)

where N is the total number of sites in the lattice. The rate
equation [Eq. (16)] is integrated using a fourth-order Runge-
Kutta method with ψn = 0, ∀ n, as initial condition, and the
Gaussian source given by

sin(t ) = s0eiωt e− (t−t0 )2

2τ2 , (17)

with s0 the source amplitude, ω the source frequency, and
t0 and τ the temporal center and width, respectively, of the
source. In particular, the nonlinear spectral localizer’s tempo-
ral analysis is demonstrated using two systems built from a
Haldane model, the first of which includes a saturable non-
linear term on the inversion-breaking mass term m, while the
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FIG. 3. Dynamics of a nonlinear moving mode in a saturable lattice. (a) Schematic of the lattice considered. The upward and downward
yellow triangles depict the position of the Gaussian source (upward) and the position where the state’s amplitude is captured (downward),
namely, the complex-valued amplitude ψout at that site. (b) Temporal evolution of the (normalized) Gaussian source sin, with a source frequency
ω/t1 = 0, a temporal center t0/t1 = 25, and temporal width τ/t1 = 8. (c) Normalized intensity of the propagating mode at the output site ψout

against the source amplitude s0, with the white (magenta) region illustrating the topological trivial (nontrivial) regime. The output site intensity
is captured at time t/t1 = 46.54. Snapshots over time of (d) the excited state |ψ| and (e) the local Chern number CL

(x,y,0) in real space, given
a source amplitude s0 = 4.4 [magenta dot in (c)]. In (e), the black dotted lines are a guide to the eye for the lattice geometry and the white
(red) regions stand for CL = 0 (CL = 1). The parameters for the saturable Haldane model are chosen such that the lattice constant a = 1 [a.u.],
the (next-)nearest-neighbor coupling t1 = 1 [a.u.] (t2/t1 = 1

3 ), inversion-symmetry-breaking mass term m/t1 = 0, Haldane phase φ = π/2,
and m0 = 2, and κ = 1 [t1/a] has been set for all the local Chern number calculations. The rate integration has been solved with a time step
dt = 0.001 and coupling coefficient ηS/t1 = 1.

second includes a Kerr-type term on the next-nearest-neighbor
coupling t2.

A. Self-sustained topological nonlinear moving modes

As a first example, we look at a phenomenon where a
self-sustained moving topological nonlinear mode is excited
[25,27,29]. This effect is illustrated by considering a linear
Haldane lattice in its trivial phase, with added nonlinearities
that can locally drive the system into a topological phase.
The system is realized by using state-dependent inversion-
symmetry-breaking mass terms [29]

m(A)
n (ψn) = m0

1 + γ |ψn|2 , m(B)
n (ψn) = −m0

1 + γ |ψn|2 , (18)

where m0 is a reference inversion-symmetry-breaking mass
term, ψn is the complex-valued amplitude on the nth lattice
site (which could be either on the A or B sublattice), and γ is
the saturation coefficient. The nonlinear Hamiltonian matrix

HNL is then written as

[HNL(ψ)]nl = [H0]nl + mn(ψn)δnl , (19)

with mn(ψn) being either m(A)
n (ψn) or m(B)

n (ψn) if the nth site
is in the A or B sublattice, respectively.

Inserting a narrow-frequency signal at the boundary of
this saturable Haldane model, with a frequency within the
linear lattice’s bulk band gap, results in an edge state that
remains localized to, and propagates only along, the system’s
boundary, as shown in Fig. 3. This phenomenon has been
previously identified as being a self-sustained topological
nonlinear moving mode [25,27,29], and it was proposed
that a topological phase transition occurs in the system
if the source’s amplitude s0 is sufficiently large. However,
previously, the topological phase transition could only be
qualitatively explained using topological band theory, which
required the assumption that the moving mode could be
expanded to fill an entire, infinite lattice, to meet the neces-
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FIG. 4. Nonlinear dynamical regimes from a topological point of view. (a) Schematic of the lattice considered. The upward yellow triangles
depict the position of the Gaussian source, with a source frequency ω/t1 = 0, a temporal center t0/t1 = 4, and temporal width τ/t1 = 0.6.
(b) Temporal evolution of the (normalized) Gaussian source sin. (c) Area of the lattice with nontrivial local topology Atopo, normalized over the
total area Atot, of the system considered (including the trivial region outside the lattice), against the source amplitude s0. The white, orange,
and magenta regions illustrate the topologically trivial, partly nontrivial, and mostly nontrivial regimes, respectively. The curve is plotted at
time t/t1 = 50. Snapshot over time of the local Chern number CL

(x,y,0) for a source amplitude (d) s0 = 5.8 [orange dot in (c)] and (e) s0 = 9.2
[magenta dot in (c)]. The black dotted lines are a guide to the eye for the lattice geometry and the white (red) regions denote CL = 0 (CL = 1).
The parameters for the nonlinear Haldane model are chosen such that the lattice constant a = 1 [a.u.], the (next-)nearest-neighbor coupling
t1 = 1 [a.u.] (t2/t1 = 1

3 ), inversion-symmetry-breaking mass term m/t1 = 2, Haldane phase φ = π/2, and κ = 1 [t1/a] has been set for all the
local Chern number calculations. The rate integration has been solved with a time step dt = 0.0005, coupling coefficient ηS/t1 = 1.

sary periodicity requirements for applying Bloch’s theorem
[25,27,29].

Instead, the local topology underlying the phenomena of
self-sustained topological nonlinear moving modes can be
directly captured in time using the nonlinear spectral local-
izer framework. In particular, real-space snapshots of the
topological dynamics quantitatively prove that the nonlinear
mode’s presence forces the system into a topological phase
with a nonzero local Chern number in its vicinity [Figs. 3(d)
and 3(e)]. Moreover, the topologically nontrivial domain
dynamically follows the nonlinear moving mode as it prop-
agates around the lattice’s boundary. Finally, the nonlinear
spectral localizer can quantitatively confirm that a topological
nontrivial region is only created when the source’s intensity is
high enough [Fig. 3(c)].

B. Self-induced topological transition

As a second example for probing the dynamics of the
nonlinear topology, we investigate the effect of the excita-

tion source on self-inducing a topological phase transition
across a full, finite system. To do so, we consider a Haldane
lattice that is topologically trivial in the linear regime with
added Kerr-type nonlinearities on the next-nearest-neighbor
couplings, and excited by a spectrally broad Gaussian source
[see Figs. 4(a) and 4(b)]. The full nonlinear Hamiltonian for
this system is

[HNL(ψ)]nl = [H0]nl + g
∑

l∈〈〈n〉〉
(|ψn|2 + |ψl |2)eiφnl , (20)

where 〈〈n〉〉 indicates the next-nearest neighbors to the nth
lattice site and φnl is Haldane phase for the couplings from
site l to n [54]. Notably, this example is distinguished from the
previous example in Sec. IV A because the model in Eq. (20)
considers longer-range nonlinearities; the local effect range is
not on the single site where the state is, but on a longer range
due to the nonlinear next-nearest-neighbor interaction.

Using the nonlinear spectral localizer framework, the
long-range nonlinear Haldane model can exhibit a range of
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different regimes with distinct topological dynamics. Depend-
ing on the excitation source amplitude s0, the source partly
or fully forces the unoccupied trivial lattice into a topolog-
ically nontrivial phase after a transient regime [Fig. 4(c)].
These different dynamical regimes can be quantified using
the area of the system with nontrivial local topology Atopo,
normalized using the total lattice area Atot, of the system
considered (including the trivial region outside the lattice).
If the source amplitude is too small, the injected power to
the lattice is not sufficient to induce a topological phase
transition. Increasing the source amplitude only partly
changes the lattice’s local topology, and realizes a dynamic
topological regime where the location(s) of the nontriv-
ial topology evolve in time [Fig. 4(d)]. Finally, when
the source is strong enough, most the of the lattice is
forced into a topologically nontrivial phase [Fig. 4(e)].
This model system exemplifies how a nonlinear sys-
tem can be used to dynamically create topological in-
terfaces, as well as to understand the lifetimes of these
interfaces.

V. CONCLUSIONS

In conclusion, we have developed a general frame-
work, based on numerical K-theory, for classifying topology
in nonlinear topological insulators. Using variants of the
Gross-Pitaevskii equation [35,36], we have demonstrated the
ability of the proposed framework to capture the topolog-
ical landscape in both real space and energy, as well as
the topological dynamics of the system. In doing so, we
have rigorously studied and mathematically proven a number
of qualitative claims present in the literature of nonlinear
topological insulators [15]. Indeed, given the nonlinear spec-
tral localizer’s ability to provide a quantitative definition
of nonlinear topological modes based on their ability to
induce a topological interface, we can directly determine
these modes’ topological robustness, and have shown that
this topological protection guarantees a nearby nonlinear
eigenmode solution to the nonlinear Hamiltonian. More-
over, we have demonstrated how this approach enables the
study of topological dynamics within nonlinear topological
insulators, where different dynamical regimes can be ob-
tained depending on the source amplitude. Although we have
presented a classification of nonlinear topological materials
that can exhibit nontrivial topology in their system’s wave
function, this needs to be contrasted with the characteri-
zation of nonlinear responses that can arise in nontrivial
topological materials [57–60]. Looking forward, we antic-
ipate that the nonlinear spectral localizer can be used to
design systems whose topology can be dynamically con-
trolled in more sophisticated arrangements that involve energy
transitions and higher-order nonlinear processes such as mul-
tiwave mixing [31–34], and that potentially yield topological
pump-probe experiments. Furthermore, as the linear spectral
localizer can be applied to aperiodic systems [34,61], non-
Hermitian systems [62], and realistic photonic crystals [45],
the nonlinear spectral localizer should be able to predict non-
linear topological modes and topological dynamics across a
broad range of materials and experimentally realizable plat-
forms.
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APPENDIX: METHODS

For the sake of completeness, we provide the details of
the methods utilized to solve the nonlinear eigenvalue equa-
tion [Eq. (1) in the main text] with HNL the (N × N ) nonlinear
Hamiltonian matrix, which is explicitly composed of a linear
part H0 and a nonlinear part H1(|ψNL|2), ψNL the nonlinear
(N × 1) eigenvector, and ENL the nonlinear eigenvalue, where
N is the total number of sites. Particularly, we mainly used
variant of the function fsolve in MATLAB [63] that uses a
specific gauge and a power constraint, and a discrete version
of the Petviashvili method [64,65].

A. fsolve from Matlab

The function fsolve in MATLAB [63] is used to solve a
system of nonlinear equations. The problem is typically spec-
ified by a loss function G that fsolve tries to minimize given
an initial guess of the unknowns. For that purpose, Eq. (1) is
rewritten as

F(ψ) = HNL(ψ)ψ − Eψ = 0, (A1)

where F(ψ) is a (N × 1) vector. For better convergence,
Eq. (A1) is separated into its real and imaginary parts

G(ψ) =
(

Re[F(ψ)]
Im[F(ψ)]

)
, (A2)

and the problem is now specified by

G(u) = 0, (A3)

where G is a (2N × 1)-vector-valued function, and u =
(. . . , αn, . . . , βn, . . . , E ) ≡ (ψ, E ) is a (2N + 1 × 1) vector
composed of the 2N + 1 unknowns, with ψn = αn + iβn.

In order to greatly speed up the computation, we provide
to fsolve the Jacobian J of G,

Jnl = ∂Gn

∂ul
, (A4)

which, in term of terms of the derivatives of F, explicitly reads
as

∂G
∂ul

=
(

Re
[

∂F
∂ul

]
Im

[
∂F
∂ul

]
)

, (A5)
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where the derivatives of F are given by
∂Fn

∂αl
= [H0]nl + g

(
2αn(αn + iβn) + (

α2
n + β2

n

))
δnl

− Eδnl , (A6)

∂Fn

∂βl
= iHnl + g

(
2βn(αn + iβn) + i

(
α2

n + β2
n

))
δnl

− iEδnl , (A7)

∂Fn

∂E
= −(αn + iβn). (A8)

1. fsolve from MATLAB, with gauge

The problem specified by Eq. (A3) is actually not well
defined because there are 2N + 1 unknowns for 2N equations.
To work out this issue, one can either provide an additional
equation such as by constraining the power ‖ψ‖ to some finite
value, or simply to get rid of one unknown. We here choose
the latter, namely, we get rid of one unknown by fixing the
U(1) gauge freedom of the system. Indeed, if u = (ψ, E ) is a
solution of the nonlinear equation (1), then ũ = (ψeiφ, E ) is
also a solution because of the |ψ|2 term in H1. Besides, if we
have Eq. (A1), then we also have

HNL(ψ)
ψ

Z
− E

ψ

Z
= 0, (A9)

with Z some constant. We therefore decide to fix the gauge by
defining Z as

Z = αν, (A10)

with ν = arg max j=1,...,N [|Re(ψ j )|] = arg max j=1,...,N [|α j |].
This is equivalent as setting one real-part component to 1, and
thereby removing it from the set of unknowns.

Consequently, we solve a slightly modified problem speci-
fied by the “gauged” function G̃,

G̃(ũ) = 0, (A11)

where G̃ is a (2N × 1)-vector-valued function, and ũ =
(. . . , α̃n, . . . , α̃ν−1, 1, α̃ν+1, . . . , β̃n, . . . , E ) is a (2N + 1 × 1)
vector composed of the 2N unknowns, with α̃n = αn/Z
and β̃n = βn/Z . Finally, the solution of the original equa-
tion [Eq. (1)] is retrieved by multiplying by Z:

ψ = Zψ̃. (A12)

As we are solving for the “gauged” function G̃, the cor-
responding Jacobian is also slightly modified. Nonetheless,
the “gauged” Jacobian can still be written in terms of of the
“ungauged” Jacobian, namely, using the ungauged variables.
Indeed, we have

F̃(. . . , α̃n, . . . , β̃n, . . . , E ) = 1

Z
F(. . . , αn, . . . , βn, . . . , E ),

(A13)

thereby

∂F̃n

∂α̃l
= ∂Fn

∂αl
, (A14)

∂F̃n

∂β̃l
= ∂Fn

∂βl
, (A15)

∂F̃n

∂E
= 1

Z

∂Fn

∂E
. (A16)

2. fsolve from MATLAB, with gauge and constraint on power

For some of the nonlinear modes obtained we also decided
to add a constraint to the nonlinear solution, namely, to fix
the total power of the mode P = ‖ψ‖2 to some finite value.
Keeping the “gauge” used previously, the additional power
constraint is realized by changing Eq. (A1) as

HNL

(√
P

ψ

‖ψ‖
)

ψ

Z
− E

ψ

Z
= 0, (A17)

which gives

G̃(P; ũ) = 0, (A18)

where G̃ is a (2N × 1)-vector-valued func-
tion, P is the given parameter, and ũ =
(. . . , α̃n, . . . , α̃ν−1, 1, α̃ν+1, . . . , β̃n, . . . , E ) is a (2N + 1 × 1)
vector composed of the 2N unknowns, with α̃n = αn/Z and
β̃n = βn/Z . The rest of the method proceeds as in Appendix
A.1, except here we did not pass a Jacobian to fsolve.

B. Petviashvili

The Petviashvili method is another method computing non-
linear solutions [64,65]. For the purpose of the Petviashvili
method, Eq. (1) is rewritten as

Mψ = ψ(p) (A19)

with

M = −(H0 − EI ) (A20)

and

ψ(p) = H1(|ψ|2)ψ. (A21)

The p superscript in ψ(p) roughly stands for its polynomial
degree, namely, p = 3 for the case of a Kerr-type term ψ

(p)
n =

|ψn|2ψn, and I is the identity matrix.
Given an initial guess ψ0, the Petviashvili method is an

iterative method that computes

ψk+1 = Sγ

k M−1ψ
(p)
k , (A22)

where γ is a constant, ψ
(p)
k is ψ(p) [Eq. (A21)] calculated with

ψ = ψk , and

Sk = 〈Mψk,ψk〉
〈ψ(p)

k ,ψk〉
(A23)

with 〈v,w〉 = ∑
v∗

i wi. Then, the iteration stops whenever

‖ψ(p) − Mψk )‖1 < ε, (A24)

otherwise the iteration continues by replacing ψk+1 → ψk . In
Eq. (A22), γ is a constant that can be heuristically chosen as

γ = p

p − 1
. (A25)
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