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Q-FACTOR FOR C4v AND C2v SUPERCELLS

In the main text, we argue that changing the symmetry of the supercell from C4v to C2v allows the defect mode
to form a leaky resonance due to a change in the representation of the bulk degeneracy from E to b1 ⊕ b2. This
symmetry breaking is achieved by changing the defect site from a circular disc to an elliptical disc with semi-major
and semi-minor axes lengths of 0.53a× td and 0.4a× td respectively where a is the lattice constant and td is a tuning
parameter. Fig. S1 shows a comparison of quality factors of the defect mode for the two cases and clearly shows the
lack of divergence of Q in the C2v symmetric supercell, indicating that the defect mode is indeed a resonance.

FIG. S1. (a) Quality factor of the defect mode (irrep A1) in a supercell with C4v symmetry. The divergence in Q shows
the appearance of a BIC. (b) Quality factor of a defect mode (irrep b2) in a supercell with only C2v symmetry. The lack
of divergence indicates that the defect mode is a resonance. The insets show the defect mode profiles for parameter values
corresponding to the maximum Q.

Q-FACTOR FOR SHIFTED DEFECT SITE

To assess the impact of symmetry breaking due to fabrication imperfections, we consider the same 2D PhC system
as discussed in Fig. 2 of the main text. We then calculate the Q-factor of the defect mode from FDTD simulations
where the defect site is displaced along the x-direction as shown in Fig. S4 (a). Fig. S4 (b) shows a plot of the
Q-factor as a function of the displacement, ∆x, normalized to the wavelength of the defect mode, λd. As is expected
for any symmetry-protected BIC, this perturbation degrades the Q-factor of the BIC. However, we can see that the
defect mode still exhibits high Q-factors for typical PhC slab and fiber fabrication errors, which are much less than
λd/10. Therefore, any perturbations that are much smaller than the scale of the wavelength will still allow the system
to exhibit an ultra-high-Q resonance which includes bends and compressions in the fiber or positional errors in the
lattice.



FIG. S2. (a) Displaced defect site inducing a symmetry breaking in the supercell. (b) Quality factor of the defect mode as a
function of the normalized displacement of the defect site.

FINDING SPECTRALLY ISOLATED DEGENERACIES IN PHCS USING MPB

The BICs presented in this work can only occur when the bulk band structure exhibits a spectrally-isolated quadratic
two-fold degeneracy. Such degeneracies can be found either at Γ or M in C4v symmetric PhCs or at Γ in C3v and
C6v symmetric PhCs. The software package MPB [1] outputs the bandgap along a given trajectory in k-space and
provides optimization routines to find bandgaps given some free parameters. Here we describe a method to find
isolated degeneracies based on the use of this function. The idea is based on the fact that in a PhC where spectrally-
isolated degeneracies occur at HSPs, simply detuning away from HSPs by a small amount ∆k results in the opening
of a small stop band proportional to ∆k2. The structural parameters of the PhC can then be optimized to find these
stop bands.

To demonstrate this, we consider the PhC shown in Fig. S2 (a) which consists of three circular discs of radii r1,
r2 and r3. The dielectric constant of the high-index material (gray) is ε = 2.8 and that of the low-index material
(white) is ε = 1. Using MPB, we run an optimization function on the radii to find the aforementioned stop bands by
computing the band structure along the path (Γ + ∆k1)→ X→ (M + ∆k2)→ (Γ + ∆k1) for some small ∆k1, ∆k2.
A stop band along the detuned path and hence the required degeneracy is found between TM bands 7 and 8 at Γ for
r1/a = 0.0924, r2/a = 0.4066 and r3/a = 0.4238, as shown in Fig. S2 (b).

FIG. S3. (a) The PhC design with three parameters: r1, r2, and r3 made out of a dielectric material with ε = 2.8 (b) TM
bands of the PhC shown in (a) for optimized values r1/a = 0.0924, r2/a = 0.4066 and r3/a = 0.4238. The spectrally isolated
degeneracy occurs at Γ and is marked with an arrow.



SUPERCELL BAND STRUCTURES FOR IDENTIFYING DEFECT MODES

Besides using FDTD, a second way to identify the presence and symmetries of the defect modes is by examining the
band structure of a reasonably sized supercell of a PhC with periodic boundaries that contains a defect. To illustrate
this, we consider the TM modes of a 2D PhC made of circular discs with r = 0.15 and ε = 6. This PhC exhibits the
spectrally isolated degeneracy between its second and third TM bands. We introduce a defect in this supercell by
detuning the radius of the central disc and plot the band structure of this supercell going through the high symmetry
points of its small Brillouin zone. Fig. S3 (a) shows that the bulk degeneracy can still be clearly seen at the new M
point in the folded band structure. The defect modes are easily identified by characteristic flat bands in the dispersion
of this supercell. Moreover, as the defect radius is varied, the frequencies of the bulk states which have support on
all sites of the supercell are barely affected but the frequencies of the defect localized modes are strongly affected.
We can then see the effect of tuning the defect size in middle panel of Fig. S3 (a) where the symmetry mismatch
between the bulk and defect modes allows for a fine-tuned three-fold degeneracy to occur. The absence of any avoided
crossings indicates the formation of a BIC due to a lack of mixing between the bulk and defect modes.

FIG. S4. (a) The band structure of a supercell consisting of 7x7 sites with periodic boundary conditions. The defect introduced
in the center has radii 0.69a, 0.695a and 0.7a in the three sub-plots (left to right). The middle panel shows that the defect mode
can be fine-tuned to be degenerate with the spectrally isolated two-fold degeneracy of the bulk. (b) z-component of E-field of
the defect modes labelled 1 and 4 (irreps B1 and A1 respectively) and the two modes of the bulk degeneracy labelled 2 and 3
(irrep E).
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