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We show that point defects in two-dimensional photonic crystals can support bound states in the
continuum (BICs). The mechanism of confinement is a symmetry mismatch between the defect mode and
the Bloch modes of the photonic crystal. These BICs occur in the absence of band gaps and therefore
provide an alternative mechanism to confine light. Furthermore, we show that such BICs can propagate in a
fiber geometry and exhibit arbitrarily small group velocity which could serve as a platform for enhancing
nonlinear effects and light-matter interactions in structured fibers.
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Over the last three decades, photonic crystals (PhCs)
have been shown to exhibit exceptional confinement and
transport properties that exploit the existence of a photonic
band gap, a band of frequencies where no electromagnetic
waves may propagate [1–4]. Photonic band gaps can inhibit
spontaneous emission of embedded quantum emitters
[5–8], facilitate slow light through band-edge operation
[9], or host localized defect modes that can serve as high-Q
resonators or waveguides. Confined defect modes form the
basis of many devices such as PhC fibers [10,11], spectral
filters, and lasers [12,13], and to achieve near-perfect
confinement, defect modes are constructed to lie within
photonic band gaps so as to spectrally isolate them from the
extended states of the PhC. However, this necessitates the
use of materials with a sufficiently high refractive index to
open complete gaps. An alternative mechanism for confine-
ment could circumvent the need for band gaps, enabling the
use of many low-refractive index materials such as glasses
and polymers as well as increasing design flexibility for the
realization of PhC-based devices.
One possible way to achieve this is by using bound

states in the continuum (BICs). BICs are eigenmodes of a
system that, despite being degenerate with a continuum of
extended states, stay confined; this confinement may result
from a variety of mechanisms [14]. For example, modes of
a PhC slab that lie above the light line of vacuum and
therefore could radiate, can remain perfectly bound to the
slab [15–20]. Previous designs with BICs have mostly
shown confinement of a mode in one dimension lower than
that of the environment. Recently, corner-localized BICs
were predicted and observed in two-dimensional chiral-
symmetric systems with higher-order topology [21,22].
However, chiral (sublattice) symmetry is, in general,
strongly broken in all-dielectric PhCs. Indeed, confinement

in the continuum has to this point not yet been achieved in
point defects embedded inside multidimensional PhCs.
In this work, we predict the existence of BICs that

are exponentially confined to point defects in a two-
dimensional PhC environment. The defect cavity and bulk
PhC are designed such that radiation leakage is prohibited
due to a symmetry mismatch between the defect mode and
the ambient continuum states. The BICs proposed here are
protected by the simultaneous presence of time-reversal
symmetry (TRS) and the point group of the lattice and as
such are robust as long as these symmetries are maintained.
As an application for these BICs, we also show how they
can circumvent band gap requirements and be used as
propagating fiber modes with arbitrarily small group
velocity in a low-contrast slow-light PhC fiber.
We draw a distinction between our BICs and the pre-

viously reported defect modes degenerate with Dirac points
in 2D PhCs [23–28]. In the latter case, the confinement of
light to a defect site is due to a vanishing density of states
at the Dirac point, which is where that confined mode’s
frequency lies. Characteristically, such defect modes exhibit
weak confinement due to the algebraic mode profile away
from the defect site. In contrast, the defect modes presented
here are bona fide symmetry protected BICs that are
exponentially localized to the defect site.
Consider a two-dimensional PhC consisting of a square

lattice of disks with dielectric constant ε and radius r
embedded in vacuum. This PhC, as shown in Fig. 1(a), is
invariant under 90° rotations (C4, C2

4, C
−1
4 ), and reflections

along the x, y axes and two diagonals (σx, σy, σd1 , σd2).
These symmetry operations constitute the C4v point group.
The irreducible Brillouin zone of this lattice contains
three inequivalent high symmetry points (HSPs), namely,
Γ ¼ ð0; 0Þ, X ¼ ðπ=a; 0Þ, and M ¼ ðπ=a; π=aÞ, as shown
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in Fig. 1(b). The HSPs Γ andM are invariant under the full
C4v group, while X is invariant only under the little group,
C2v. Eigenmodes of the PhC at a HSP transform according
to the irreducible symmetry representations (irrep) of the
group under which the HSP is invariant. The X point
has four possible one-dimensional irreps ða1; a2; b1; b2Þ
with character table as shown in Table I. Similarly,
the Γ and M points have four one-dimensional irreps
ðA1; A2; B1; B2Þ and one two-dimensional irrep (E) with
character table as shown in Table II [2]. The eigenmodes of
a C4v symmetric PhC that transform according to the two-
dimensional irrep (E) of the C4v point group commonly
manifest as quadratic twofold degeneracies at Γ and M in
the presence of TRS. When C4v is broken, this degeneracy
splits into two Dirac points as long as inversion and TRS
are retained. However, breaking TRS can lift the degen-
eracy completely [29].
We now describe the general mechanism for creating

defect-localized BICs. By changing the geometric param-
eters of the lattice, the band dispersion of a C4v and TRS-
symmetric PhC can be designed such that the twofold
degeneracy at either Γ orM is spectrally isolated from other
bands. In a large system consisting of many unit cells of
such a PhC (a supercell), a single defect site with radius
rd ≠ r is introduced at the center. This creates modes with a
significant support on the defect site that generally radiate
by hybridizing with the bulk states of the PhC, forming
leaky resonances that are characterized by a complex
frequency with a negative imaginary part. The frequency

of such modes can be tuned by changing the parameters of
the defect site such as size or dielectric constant. When the
real part of the frequency of the defect mode exactly
matches that of the spectrally isolated twofold degeneracy
of the bulk, it becomes a perfectly confined BIC provided
that the defect mode transforms according to a one-
dimensional irrep that is orthogonal to the two-dimensional
irrep of the bulk. The presence of this BIC can be inferred
from the vanishing of the imaginary part of the frequency
and hence a diverging quality factor Q ¼ −ReðωÞ=2ImðωÞ
of the defect mode.
To demonstrate this, we simulate this system using the

finite-difference time domain method (FDTD) as imple-
mented in MEEP [30]. The bulk band requirements are
easily met in a simple square lattice of disks with dielectric
constant ε ¼ 4 and radius r=a ¼ 0.275, where a is the
lattice constant in both x and y directions. The chosen
values of ε and r=a allow the spectrally isolated twofold
degeneracy to occur between TM bands 10 and 11 at theM
point as shown in Fig. 2(a). The photonic density of states
(DOS), also shown in the same figure, is given by
DOSðωÞ ¼ P

n

R
k∈BZ δ½ω − ωnðkÞ�dk, where ωnðkÞ is

the frequency eigenvalue at the momentum k and band
index n. Since each band undergoes an extremum at the
degeneracy, the DOS exhibits a jump-discontinuity-type
van Hove singularity between two finite and nonzero
values. The nonvanishing set of states at the degeneracy
forms the continuum within which a BIC can be created.
In a large supercell, we now introduce a defect by

changing the radius (rd ≠ r) of a single disk in the center of
the supercell. As we scan the values of rd, a BIC emerges
for the specific value of the defect radius that corresponds
to a mode with the exact frequency of the bulk degeneracy.
This is seen from the sharp divergence of the Q factor of
the defect mode as shown in Fig. 2(b). Examining the
mode profile shown in the inset of Fig. 2(c) reveals that
the defect mode transforms according to the irrep A1, which
is prevented from mixing with the basis modes of the
orthogonal two-dimensional irrep E of the bulk. Moreover,
the mode shows very strong exponential localization to the
defect site which can be seen by plotting the intensity
envelope as shown in Fig. 2(c). Another important feature
of this BIC is its occurrence above ωa=2πc ¼ 1. This
implies that the lattice constant of the bulk PhC is larger
than the wavelength of the BIC mode, a property which

FIG. 1. (a) The unit cell of a two-dimensional PhC consisting of
circular disks. The symmetry operators of the C4v point group are
labeled. (b) The Brillouin zone of the PhC showing its HSPs and
the little groups under which the HSPs are invariant. The solid
color consists of all momenta that lie within the irreducible
Brillouin zone.

TABLE I. Character table for the C2v point group.

C2v I C2 σx σy

a1 1 1 1 1
a2 1 1 −1 −1
b1 1 −1 1 −1
b2 1 −1 −1 1

TABLE II. Character table for the C4v point group.

C4v I 2C4 C2 2σx;y 2σd1;d2

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0
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could prove useful for fabrication because features sizes
would need not be subwavelength.
To conclusively show that this BIC is indeed symmetry

protected, we change the defect site from a disk to a filled
ellipse, which reduces the symmetry of the supercell from
C4v to C2v. Because of this deformation, the degeneracy
between the two modes that formed the two-dimensional
irrep E of C4v is very slightly lifted, and the resultant
nondegenerate modes have the one-dimensional irreps b1
and b2 of C2v. As before, we vary the defect size to tune the
frequency of the defect mode and find a maximumQ ∼ 104

indicating that the mode is not a BIC but a resonance.
Indeed, the field pattern of the defect mode as shown in
the inset of Fig. 2(d) transforms according to b2, which
coincides with one of the irreps of the bulk enabling the
defect and bulk modes to couple and create a leaky

resonance with a finite Q (see Supplemental Material
[32]). This is also evident from the intensity envelope of
the resonance as shown in Fig. 2(d) that markedly dem-
onstrates the lack of exponential confinement to the defect
site. Displacing the defect site away from the center
also breaks the C4v symmetry of the supercell and has a
similar effect of degrading the Q factor of the mode (see
Supplemental Material [32]).
The symmetry mismatch between the defect mode and

bulk bands requires the existence of a spectrally isolated
twofold degeneracy in the bulk PhC, so the question
naturally arises: How easy is it to design this bulk band
requirement? It is clear from our findings that even simple
PhC designs are able to satisfy the requirements for
reasonably low dielectric contrast, and in fact, the feature
in the TM bands of the PhC discussed in Fig. 2(a) persists

FIG. 2. (a) The TM bands and photonic DOS of a square lattice of dielectric disks of ε ¼ 4 and r=a ¼ 0.275 calculated using
MIT Photonic Bands (MPB) [31]. The spectrally isolated twofold degeneracy is marked with an arrow. (b) Quality factor (Q) of the defect
mode as a function of the defect radius ðrdÞ. The sharp divergence in Q indicates the existence of a BIC at rd=a ¼ 0.224. The inset
shows the dependence of the defect mode frequency on rd. (c) The E-field intensity envelope of the BIC showing exponential
localization as a function of the distance (along the y axis) from the defect site. The inset shows the z component of theE field of the BIC
extracted from FDTD simulations. (d) The E-field intensity envelope of the resonance when the symmetry of the supercell is reduced
from C4v to C2v. The inset shows the z component of the E field of the resonance extracted from FDTD simulations.
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down to ε ¼ 3 for a slightly smaller value of r=a.
Furthermore, such quadratic degeneracies can also occur
at the Γ point in C3v and C6v symmetric lattices, forming
two-dimensional irreps of the respective point groups. In
the Supplemental Material [32], we outline a method for
finding optimized structures with tunable parameters that
exhibit such degeneracies.
For traditional defect modes in 2D PhCs, it suffices to

have a band gap for one polarization, either TE or TM,
since they constitute orthogonal subspaces that do not mix.
However, for applications such as PhC fibers (i.e., where
the 2D pattern described above is extruded in the third
direction z and kz ≠ 0 generally), the distinction between
TE and TM is lost, and one requires an overlapping band
gap for both polarizations to confine defect modes. In
particular, slow-light PhC fibers rely on the existence of a
complete band gap at kz ¼ 0, which persists for a small
range of kz [33–35]. The arbitrarily small group velocity
of the propagating modes in such fibers is achieved by
operating near the kz ¼ 0 band edge. These slowly propa-
gating modes can then be used to strongly enhance
interactions of light with either the dielectric material itself
or an infiltrated material [36,37], depending on whether the
fiber hosts a solid or hollow core. Thus, the design of these
fibers requires a high dielectric contrast to open a complete
band gap at kz ¼ 0. To the best of our knowledge, the
smallest contrast for which a complete band gap exists for
2D PhCs is for ε ¼ 4.41 [38]. We now extend the idea of
point-defect-localized BICs to propagating slow-light fiber
modes, circumventing the requirement for a complete
band gap.
The fiber design that we propose is identical to an

extruded version of the 2D PhC discussed before, now
consisting of cylinders extended along the direction of
propagation in the fiber. However, since the distinction
between TE and TM polarizations is lost, the spectrally
isolated twofold degeneracy of the bulk must occur in the
full band structure in order to create a BIC. This is easily

achieved in our structure for a range of kz values around 0.
For instance, Fig. 3(a) shows the band structure of the fiber
with ε ¼ 4, r=a ¼ 0.2755 at kz ¼ 0.18 ð2π=akÞ, where ak
is the lattice constant in the x, y plane. As before, we
introduce a defect site and tune the radius rd and find a BIC
at rd=a ¼ 0.230 for this particular value of kz. The field
profile of the BIC is plotted in Fig. 3(b), forming a solid-
core mode and displaying strong confinement to the defect
site. Since the spectrally isolated twofold degeneracy
persists down to kz ¼ 0, the group velocity of this BIC
along the length of the fiber ðvgz ¼ dω=dkzÞ can be made
arbitrarily small with an appropriate choice of rd. It is also
possible to create a hollow-core-like fiber mode where the
BIC has reasonable support in the air region. To achieve
this, we omit the central defect site and instead tune the
radius of the nearest eight sites uniformly so as to maintain
C4v and find a BIC as shown in Fig. 3(c).
The BICs presented here could be experimentally realized

in a variety of systems. For example, these principles could
be applied to create high-Q nanocavities in gapless PhC
slabs where some vertical leakage is unavoidable but in-
plane leakage could be suppressed through the symmetry
mismatch mechanism. Functionally, these modes would
behave similarly to run-of-the-mill PhC slab-based cavities
that rely on a band gap but could be realizable in alternative
structures with potentially lower dielectric contrast.
Similarly, the PhC fiber design discussed here could be
implemented straightforwardly by complex fiber drawing
techniques [11]. Furthermore, such isolated degeneracies
are also known to occur in 3D PhCs, which could lead to
true gapless confinement of light in all directions such
as in structures that are precursors to ones with Weyl points
[39–42]. Evidently, these BICs rely solely on symmetry
considerations and can also be readily realized using other
periodic systems such as acoustic crystals, waveguides
[22,43], and coupled resonator arrays.
In conclusion, we have proposed BICs that are expo-

nentially localized to defects beyond band gaps in both 2D

FIG. 3. (a) The kk-band structure of the defect-free PhC fiber at kz ¼ 0.18 ð2π=akÞ. The spectrally isolated twofold degeneracy is
marked with an arrow. (b) D-field intensity profile of a solid-core fiber BIC mode that occurs at kz ¼ 0.18 ð2π=akÞ. (c) D-field intensity
profile of a hollow-core-like fiber BIC mode.
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PhCs and structured fibers. The PhC slow-light fiber
implementation relaxes the need for band gaps at kz ¼ 0
and thus allows for a wider range of materials to be used
for their implementation. The results presented here have
consequences for the general design of PhC-based devices
since the requirement for finding band gaps could poten-
tially be replaced with finding isolated degeneracies at
HSPs, which occur more commonly at lower dielectric
contrast and at higher frequencies in the band structure.
Furthermore, it may be possible to use the BIC mechanism
to realize hinge modes in higher-order photonic topological
insulators [21,22,44–46] due to their structural similarity
with PhC fiber modes.
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