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Automated mode amplitude balance 
An automated routine was used to adjust the transmission through EOM2 in order to establish 
multimode lasing with comparable mode amplitudes. We first set the transmission for each 
mode to be equal. We then recorded a measurement containing 20 pulse trains and calculated 
the average amplitude of each lasing mode. Next, we identified any modes with amplitude 25% 
above or below the mean amplitude. We then made a small (1%) adjustment to the transmission 
for these modes (i.e. the transmission was increased for modes that were too weak and 
decreased for modes that were too strong). This routine proceeded iteratively until the 
amplitude of each lasing mode was within ±25% of the mean. 

Demodulation details 
I/Q demodulation was performed in software to obtain the frequency of the lasing modes. The 
nominal demodulation frequency for each mode was first estimated by finding the peak of the 
Fourier transform of the interference signal. We then used a Hann window to select the mode 
of interest from each pulse train and recovered the amplitude and phase of the lasing mode via 
standard I/Q demodulation using a finite impulse response low-pass filter. The low-pass filter 
was set to have a 3 dB point at the nominal demodulation frequency. The slope of the phase 
was then fit via linear regression using the 40 ns with the largest amplitude (corresponding to 
the pulse duration). Finally, the lasing frequency was estimated from the slope of the phase 
(plus the demodulation frequency), as discussed above, and changes in the lasing frequency 
were converted to strain in the fiber assuming a standard response of 50 kHz/µε. 

Doppler shift compensation  
In this section, we describe a technique to compensate for the Doppler frequency shift created 
from dynamic strain [1,2]. To do this, we added a reference interferometer using a second laser, 
which was coupled in and out of the FUT using a WDM filter (see figure S2). Using this 
reference interferometer, we recorded the time-varying phase accumulated through the 400 m 
FUT, 𝜙 (𝑡). We then calculated the single-pass Doppler frequency shift experienced by light 
passing through the FUT: Δ𝑓 (𝑡) = [𝑑𝜙 (𝑡) 𝑑𝑡⁄ ] (2𝜋)⁄ . To correct for the impact of this 
Doppler shift on the lasing modes, we also needed to measure the strength of the gain pulling 
effect on each mode. This was accomplished by wrapping a short section of the FUT on a 
reference PZT and introducing a calibration signal (the reference PZT did not overlap with any 
of the sensor positions). We then calculated the complex ratio, 𝛾 , between the frequency 
deviation observed for each lasing mode, Δ𝜈 𝐹 , , due to the reference PZT modulation, 
and the single-pass frequency deviation measured using the reference interferometer, Δ𝜈 𝐹 , : 𝛾 = Δ𝜈 𝐹 ,Δ𝜈 𝐹 , (𝑆1) 

where Δ𝜈  is the Fourier transform of Δ𝑓 , 𝑛  enumerates the modes, and 𝐹 ,  is the 
frequency of the calibration tone. This ratio provided a scale factor, which accounts for the 
increased sensitivity to strain-induced Doppler shifts of the lasing modes. This scale factor 
varied slightly from mode to mode but was ~3.5 in our experiments using 40 ns pump pulses. 
To perform the correction, we create the analytic signal using the Hilbert transform of the 



reference and lasing mode frequency shifts (to allow for a phase difference between the two 
signals). The corrected signal is given by: Δ𝑓 , = 𝐻 𝐻{Δ𝑓 } − 𝛾 , 𝐻 Δ𝑓 (𝑆2) 

where 𝐻{} is the transform to the analytic signal and 𝐻 {} is the inverse transform. This 
approach added negligible noise to the measurements since the noise in the CW reference 
interferometer was much lower than the noise in the measured lasing modes. While this 
technique adds some experimental complexity, it shows that cross talk due to strain-induced 
Doppler shifts is a tractable problem and may be addressed more efficiently in a future work. 

 

Fig. S1. The experimental setup shown in Fig. 2 was modified to include a reference 
interferometer probed by a separate laser. This interferometer was used to suppress cross talk 
due to strain induced Doppler shifts. The acousto-optic modulator (AOM) introduced a 55 MHz 
frequency shift enabling I/Q demodulation, while the WDM was used to reject the pump light. 
A reference PZT was also added after the FUT to introduce a calibration tone. 

Gain pulling spread spectrum for increased bandwidth 
One of the attractive features of Brillouin lasers is their ability to suppress the frequency noise 
of the pump laser, enabling narrow linewidth lasing [3]. However, in the Brillouin laser sensor 
presented here, this phenomenon can also reduce the sensor response to changes in the Brillouin 
resonance. To evaluate the impact of this effect on the Brillouin laser sensor, we considered a 
simple model where a lasing mode circulates with power spectrum, 𝑃 (Δ𝑓), where Δ𝑓 is the 
offset from the center of the Brillouin gain spectrum. During each round trip, this mode 
experiences loss, 𝛼, and Brillouin gain, 𝑒 ( ). Using a standard model for saturation, we 
can express the Brillouin gain as [4]: 𝐺 (Δ𝑓) = 𝑔 (Δ𝑓)𝑃 𝐿1 + ( 𝑔 (Δ𝑓)𝑃 (Δ𝑓)𝑑Δ𝑓 𝑃⁄ ) (𝑆3) 

where 𝑔 (Δ𝑓) is the intrinsic SBS gain spectrum, 𝑃  is the pump power in the absence of 
pump depletion, 𝐿 is the length of fiber over which the mode experiences gain (i.e. 4 m for a 
40 ns pump pulse), and 𝑃  is the integrated lasing power at which the gain is reduced by a 
factor of 2. We neglected spontaneous emission and noise as the primary goal here is to evaluate 
the relationship between the power spectrum of the lasing mode and the sensor response time, 
rather than precisely model the system.  

We first consider a monochromatic Brillouin lasing mode with power spectrum 𝑃 (Δ𝑓) = 𝑃 𝛿(Δ𝑓 − Δ𝑓 ). In this situation, if the gain spectrum shifts by a small amount 
(e.g. due to strain), the mode will continue to lase at the same frequency as long as it remains 
above threshold, since the mode does not contain spectral components at other frequencies 
which could be amplified. In other words, a monochromatic lasing mode would not respond to 
small changes in the gain spectrum. In a real system, the lasing mode will always have a finite 
linewidth and gain pulling will eventually shift the mode back to the center of the gain 



spectrum. However, this process can be quite inefficient and could severely limit the response 
time of the Brillouin laser sensor.  

Next consider a more realistic system where the lasing mode is described by a Gaussian 
lineshape with mean frequency, 𝑓 , , peak power, 𝑃 , and linewidth, Γ  ( 𝑃 (Δ𝑓) =𝑃 𝑒 , ∕  ). If the Brillouin frequency suddenly changes, the number of round-trips, 
M, required for the peak of the lasing spectrum to match the new peak of the gain spectrum can 
be approximated as  𝑀 ≅ ln 𝑃 (0) 𝑃 𝑓 ,⁄𝐺 (0) − 𝐺 𝑓 , (S4) 

where 𝑃 (0) 𝑃 𝑓 ,⁄  is the initial ratio of the lasing power at the new peak of the 
Brillouin gain spectrum to the maximum lasing power and the denominator describes the 
relative gain experienced at these two frequencies. As an example, a lasing mode with Γ =1.3 𝑀𝐻𝑧 will require M=1000 cycles to shift to the center of the gain spectrum after a sudden 
shift of 2 MHz at a typical gain of 𝑒 ( ) = 2. Even if we assume a high gain of 𝑒 ( ) =100, M=100 cycles would be required to track a shift of 2 MHz. This simple model indicates 
that the sensor bandwidth can be severely limited in the case of narrowband lasing.  

In this work, the spectral content of the lasing mode is also affected by the temporal 
modulation introduced by EOM2 after each round trip. Since this time-domain modulation is 
equivalent to a convolution in the frequency domain, this process ensures that the laser 
spectrum is spread over a wide bandwidth. Thus a single round trip in the lasing cavity involves 
gain, loss, and convolution with the Fourier transform of the intensity modulation, 𝐼(Δ𝑓).  We 
can then describe the lasing spectrum after the mth round trip as:  𝑃 (Δ𝑓, 𝑚) = 𝛼𝑒 ( )𝑃 (𝛿𝑓, 𝑚 − 1) 𝐼(Δ𝑓 − 𝛿𝑓)𝑑𝛿𝑓 (𝑆5) 

The intensity modulation term essentially describes the redistribution of lasing power from 
the frequency 𝛿𝑓  to Δ𝑓 . We used this expression to simulate the evolution of the lasing 
spectrum after a sudden shift in the Brillouin gain spectrum. We repeated the simulation for 
lasing modes exposed to a Gaussian shaped temporal modulation with FWHM varying from 
40 ns to 320 ns. The evolution in the peak of the lasing spectrum is shown in Fig. S2(a) after 
the Brillouin spectrum was shifted by 2 MHz. In each case, the lasing frequency eventually 
converges to the center of the gain spectrum ( Δ𝑓 = 0) ; however, the transition time is 
considerably faster for lasing modes that are modulated by shorter pulses. We found that a 
mode modulated by 40 ns pulses returned to within 10 kHz of the center of the gain spectrum 
after 15 round trips, while a mode modulated by 320 ns pulses required 88 round trips. Thus, 
the intra-cavity modulation introduced by EOM2 not only helped to control mode competition, 
but also increased the sensor bandwidth.  

 

Fig. S2 (a) Evolution of the center frequency of a lasing mode after the Brillouin frequency shifts 
by 2 MHz (i.e. from 2 MHz to 0 MHz). The lasing modes that were modulated with shorter 
pulses converged more rapidly to the center of the shifted gain spectrum. (b) The evolution of 
the power spectrum using 40 ns modulation. The broad transform limit allows the mode to 
quickly return to the center of the gain spectrum. c The evolution of a mode using 320 ns 



modulation. The relatively narrow spectrum requires considerably longer to adjust to a change 
in the Brillouin resonance.  

Mapping time to position 
Mapping measurement time to sensor position was performed using the same conversion as in 
standard BOTDA or BOTDR. The position of the interaction, Δ𝑧 , is given by Δ𝑧 =(Δ𝑡 − 𝑡 )𝑐 (2𝑛 )⁄  where Δ𝑡 is time, 𝑛  is the effective index of the fiber, and 𝑡  is the time 
it takes for the light to propagate from Δ𝑧 = 0 to the detector. 
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