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The Clifford spectrum is a form of joint spectrum for noncommuting matrices. 
This theory has been applied in photonics, condensed matter and string theory. In 
applications, the Clifford spectrum can be efficiently approximated using numerical 
methods, but this only is possible in low dimensional example. Here we examine 
the higher-dimensional spheres that can arise from theoretical examples. We also 
describe a constructive method to generate five real symmetric almost commuting 
matrices that have a K-theoretical obstruction to being close to commuting 
matrices. For this, we look to matrix models of topological electric circuits.

© 2023 Elsevier Inc. All rights reserved.

1. Multivariable spectrum

There are many in-equivalent ways to define a joint spectrum of a d-tuple (A1, . . . , Ad) of Hermitian 
n-by-n matrices. For example, there is the monogenic spectrum [15] which has a close connection with 
a noncommutative functional calculus. Here we are concerned with the Clifford spectrum, as defined in 
[16], which is useful in many parts of physics such as high-energy physics [2,8], condensed matter physics 
[7,12,21,31] and photonic crystals [5,10]. These papers make use of the connection between the Clifford 
spectrum and K-theory [11,24]. Here, we begin to investigate the question of what higher dimensional 
spaces can occur as the Clifford spectrum of a d-tuple (A1, . . . , Ad) of Hermitian matrices and calculate the 
K-theory associated with these spaces.

We make extensive use of the complex Clifford algebras C�(d). We tend to think of C�(n) as the universal 
unital C∗-algebra for generators e1, . . . , ed subject to relations

e∗j = ej , (j = 1, . . . , d)

e2
j = 1, (j = 1, . . . , d)

* Corresponding author.
E-mail addresses: awcerja@sandia.gov (A. Cerjan), tloring@unm.edu (T.A. Loring).
https://doi.org/10.1016/j.jmaa.2023.127892
0022-247X/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2023.127892
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2023.127892&domain=pdf
mailto:awcerja@sandia.gov
mailto:tloring@unm.edu
https://doi.org/10.1016/j.jmaa.2023.127892


2 A. Cerjan, T.A. Loring / J. Math. Anal. Appl. 531 (2024) 127892
ejek = −ekej , (j �= k)

and so refer to (e1, . . . , ed) as the universal Clifford generators. We also consider finite matrices (γ1, . . . , γd)
that satisfy the above relations, and call such a d-tuple a representation of the Clifford relations.

Definition 1.1. Suppose A1, . . . , Ad are Hermitian matrices, all in Mn(C). The Clifford spectrum Λ(A1, . . . ,
Ad) is the set of λ in Rd such that Lλ(A1, . . . , Ad) is a non-invertible element of Mn(C) ⊗ C�(d), where

Lλ(A1, . . . , Ad) =
∑

(Aj − λj) ⊗ ej .

The element Lλ(A1, . . . , Ad) is referred to as the spectral localizer in physics [5,24]. Kisil takes closure 
when defining the Clifford spectrum, but we find this is not needed as Λ(A1, . . . , Ad) as defined above is 
automatically closed. This is because it is the zero-set of the scalar valued function

μC
λ (A1, . . . , Ad) = smin(Lλ(A1, . . . , Ad))

where we use smin to indicate the smallest singular value of a matrix. The function λ �→ μC
λ (A1, . . . , Ad)

is the Clifford pseudospectrum introduced in [22]. This function is continuous, even Lipschitz [22], so its 
zero-set is already closed.

The term Clifford spectrum is used in various incompatible ways in the mathematics literature [1,17]. 
There seems to be no single notion of joint spectrum that is best for non-commuting matrices. What we are 
calling the Clifford spectrum behaves in mathematically odd ways with respect to functional calculus, but 
it links very well to topological invariants and bound states in physics.

For many reasons, including minimizing computer memory use, we want to represent the ej by the 
smallest matrices possible. It turns out that having a faithful representation of the complex Clifford algebra 
is not needed. In fact, we can use any nontrivial representation, with irreducible representations generally 
preferred.

Lemma 1.2. Suppose γ1, . . . , γd are in M r(C) with r > 0 and these form a representation of the Clifford 
relations. If A1, . . . , Ad are Hermitian matrices then

smin

⎛
⎝ d∑

j=1
(Aj − λj) ⊗ γj

⎞
⎠ = smin

⎛
⎝ d∑

j=1
(Aj − λj) ⊗ ej

⎞
⎠ .

Proof. When d is even, C�(d) is isomorphic to M2d/2(C). Up to unitary equivalence, the only option for 
the γj is a direct sum of copies of the ej . This means that, if we ignore multiplicity, the spectrum of ∑

(Aj − λj) ⊗ γj and 
∑

(Aj − λj) ⊗ ej will be the same.
When d is odd, C�(d) is isomorphic to Mm(C) ⊕Mm(C) with m = 2(d−1)/2. We have in this case two 

fundamental representations of the Clifford relations, α1, . . . , αd and −α1, . . . , −αd in Mm(C). There is a 
unitary Q so that

γj = Q

[
αj ⊗ Ip 0

0 −αj ⊗ Iq

]
Q∗

where at least one of p and q is positive since p + q = r. In this case, the spectrum of 
∑

(Aj − λj)⊗ γj and ∑
(Aj − λj) ⊗ ej may differ, but these will have the same singular values since

∑
(Aj − λj) ⊗ (−αj) = −

∑
(Aj − λj) ⊗ αj . �
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There are precious few noncommutative examples with d ≥ 2 where we can exactly calculate, by hand, 
the Clifford spectrum. When d = 2 the Clifford spectrum of (A1, A2) is basically the same as the ordinary 
spectrum of A1 + iA2, so this case is understood. More precisely, one can prove [9] that (x, y) is in the 
Clifford spectrum of the pair exactly when x + iy is in the ordinary spectrum of A1 + iA2. Kisil [16] finds 
an example of three 2-by-2 matrices whose Clifford spectrum is a 2-sphere. See [2, §IV] for a proof that 
the three matrices that generate a fuzzy sphere also have Clifford spectrum a 2-sphere. In [32, §3.1] more 
examples of three 2-by-2 matrices are examined, where the Clifford spectrum can be one sphere or two 
spheres, possibly touching. Utilizing computer algebra systems one can get more examples [9,32], but these 
are still limited to examining only relatively small d-tuples of small matrices. These examples showed it 
possible to have the Clifford spectrum for four Hermitian matrices to be homeomorphic to a torus or a 
three-sphere.

In many applications, for example in [5,12,21], it suffices to use numerical computer methods to estimate 
the function λ �→ μC

λ (A1, . . . , Ad). Since small perturbations of a function can drastically change its zero-set, 
this does not really help understand the structure of the Clifford spectrum.

In this work, by systematically exploring what can lead to a symmetry in the Clifford spectrum, we are 
able to make explicit calculations in examples where the Clifford spectrum is any even-dimensional sphere. 
Later in the paper we resort to numerical calculations inspired from physics to find an explicit example of 
five almost commuting real symmetric matrices that have a K-theoretical obstruction keeping them far from 
commuting real symmetric matrices. This somewhat settles the mystery raised in [3], where KK-theory and 
E-theory were used to show that such matrices must exist, but with no hint of how to find these matrices.

2. Symmetries in the Clifford spectrum

Suppose γ1, . . . , γd form a representation of the Clifford relations. If U = [uij ] ∈ O(d) is a real orthogonal 
matrix we get another representation of the Clifford relations by defining

γ̂j =
d∑

r=1
ujrγr.

This claim is easy to verify. The main calculation needed is

γ̂j γ̂k =
(∑

r

ujrukr

)
I +

∑
r<s

(ujruks − ukrujs) γrγs.

Setting j = k we find

γ̂2
j =

(∑
r

ujrujr

)
I = I

and for j �= k,

γ̂j γ̂k =
∑
r<s

(ujruks − ukrujs) γrγs

which implies γ̂j γ̂k = −γ̂kγ̂j .

Lemma 2.1. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C) and that U ∈ O(d). Suppose 
λ ∈ Rd. The d matrices
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Âj =
∑
s

ujsAs

are also Hermitian and

λ ∈ Λ (A1, . . . , Ad) ⇐⇒ Uλ ∈ Λ
(
Â1, . . . , Âd

)
.

Proof. Select any γ1, . . . , γd that form a representation of the Clifford relations. Since U� is just as orthog-
onal as U we know that the matrices

γ̃j =
∑

urjγr

also form a representation of the Clifford relations. We can compute the Clifford spectrum using the γ̃j and 
so look at

∑
j

(Aj − λjI) ⊗ γ̃j =
∑
j

Aj ⊗ γ̃j −
∑
j

λjI ⊗ γ̃j .

We find
∑
j

Aj ⊗ γ̃j =
∑
j

∑
r

Aj ⊗ urjγr

=
∑
r

∑
j

urjAj ⊗ γr

=
∑
j

∑
r

ujrAr ⊗ γj

=
∑
j

Âj ⊗ γj .

Substituting Aj by λjI we find
∑
j

λjI ⊗ γ̃j =
∑
j

αjI ⊗ γj

where α = Uλ. Thus
∑
j

(Aj − λjI) ⊗ γ̃j =
∑
j

(Âj − αjI) ⊗ γj

and we are done. �
Theorem 2.2. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C) and that U ∈ O(d). Let

Âj =
∑
s

ujsAs.

If there exists Q ∈ U(n) such that

QÂjQ
∗ = Aj

for all j then

λ ∈ Λ (A1, . . . , Ad) ⇐⇒ Uλ ∈ Λ (A1, . . . , Ad) .
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Proof. Since unitarily equivalent d-tuples have the same Clifford spectrum, this follows from Lemma 2.1. �
3. Scaling alters connectivity

We regard the lack of a spectral mapping theorem to be a feature, not a bug, when it comes to applications 
in physics. We first present a simple example where applying an affine function to a triple of matrices does 
not correspond to an affine transformation applied to the Clifford spectrum. The transformation we apply 
is simply rescaling in two of the dimensions. Depending on the size of the rescaling, the Clifford spectrum 
remains sphere-like or breaks into pieces. This is reminiscent of the transition from individual atoms to a 
molecule. To demonstrate this kind of transition in a physical system explicitly, we then consider a second 
example rooted in a well-known 2D lattice whose band structure can be tuned to possess non-zero first 
Chern numbers [13].

Example 3.1. Consider three matrices,

A =

⎡
⎢⎣−1 0 0

0 0 0
0 0 1

⎤
⎥⎦ , B =

⎡
⎢⎣ 0 1 0

1 0 1
0 1 0

⎤
⎥⎦ , C =

⎡
⎢⎣ 0 i 0
−i 0 i

0 −i 0

⎤
⎥⎦ .

We look at the Clifford spectrum of (A, tB, tC) for various values of t between 1/7 and 1. We have rotational 
symmetry in the second and third coordinate so it suffices to display the slice with λ3 = 0, as in Fig. 3.1. 
There is a transition in the topology of the spectrum at t = 1/4, as smaller positive values of t lead to three 
separated surfaces each of which are homeomorphic to a sphere, while larger values of t lead to a (single) 
connected surface. This example is similar to [9, Example 4.4].

The transition observed in the Clifford spectrum, from being a collection of disconnected spheroids to 
being a single spheroid, manifests in some crystalline materials when the spacing between the constituent 
atoms or molecules is changed relative to the system’s energy scale, in some dimensionless sense. When the 
spacing between these elements is sufficiently small so that the system behaves as a crystal, the Clifford 
spectrum is a connected surface. When the spacing between the elements increases beyond some critical 
value, this surface breaks apart into many separated surfaces, and the system behaves as though it is a 
collection of decoupled elements.

Example 3.2. To demonstrate this transition, consider a finite piece of a Haldane lattice [13], which is a hon-
eycomb lattice that contains both nearest-neighbor and next-nearest-neighbor couplings. The Hamiltonian 
for this lattice can be written in a tight-binding basis as

H = M
∑
m,n

(
a†m,nam,n − b†m,nbm,n

)
− t

∑
〈(m,n),(m′,n′)〉

(
b†m′,n′am,n + a†m,nbm′,n′

)

− tc
∑

〈〈(m,n),(m′,n′)〉〉

(
eiφa†m′,n′am,n + e−iφa†m,nam′,n′ + eiφb†m′,n′bm,n + e−iφb†m,nbm′,n′

)
. (1)

Here, am,n and bm,n (a†m,n and b†m,n) are the annihilation (creation) operators on the two constituent 
sublattices in the unit cell identified by the index (m, n), and we are using notation that is common in 
the physics literature for these types of systems with c† denoting the conjugate transpose of c. The two 
sublattices have opposite on-site energies (i.e., diagonal elements) ±M . The nearest-neighbor couplings have 
strength t, and the summation 〈(m, n), (m′, n′)〉 only includes those lattice sites in the same or adjacent 
unit cells that are nearest neighbors. The next-nearest-neighbor couplings have strength tc and a direction 
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Fig. 3.1. (a) The Clifford spectrum Λ(A, tB, tC) for t = 1/7, 1/6, . . . , 1, for fixed λ3 = 0. (b) Plot of the localizer gap as λ1 varies for 
the same set of t, with λ2 = λ3 = 0. The coloration is consistent between both plots, with t = 1/7 corresponding to teal and t = 1
displayed as magenta. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3.2. Localizer gap μC
λ for a 12-by-12 Haldane lattice whose Hamiltonian is given by Eq. (1), with tc = 0.5t, φ = π/6 and M = 0. 

Here, only x is varied, with y fixed at one of the rows of lattice sites and E = 0. Different colors show different values of κX and 
κH , the scaling coefficients in Eq. (2).

dependent phase φ; the summation over 〈〈(m, n), (m′, n′)〉〉 denotes these next-nearest-neighbor pairs of 
lattice sites.

The other two matrices that are combined to form this system’s spectral localizer so as to calculate its 
Clifford spectrum are its position matrices. In the tight-binding basis, these matrices are diagonal, and X
and Y contain the coordinates of each lattice site (xm, yn) in both sublattices. For the plot shown in Fig. 3.2, 
the site-to-site spacing is a, such that the crystal’s lattice vectors have length 

√
3a. Altogether, the spectral 

localizer for the Haldane lattice can be written (using the Pauli spin matrices as the Clifford representation) 
as

Lλ=(κXx,κXy,κHE)(κXX,κXY, κHH) = κX (X − x) ⊗ σx + κX (Y − y) ⊗ σy + κH (H −E) ⊗ σz. (2)

Here, we have included two dimension-full scaling coefficients, κX and κH that have units of inverse distance 
and inverse energy, respectively, such that Lλ is dimensionless. Moreover, we are directly identifying the 
components of λ = (κXx, κXy, κHE) as the corresponding physically meaningful values of position (x, y)
and energy E, but similarly re-scaled to be dimensionless.

Beyond enforcing consistent units in the spectral localizer, the two scaling coefficients κX and κH can be 
heuristically thought of as adjusting the weights given to the position matrices X − x and Y − y relative to 
lattice’s Hamiltonian H − E in the Clifford spectrum Λ(κXX, κXY, κHH). As these weights are adjusted, 
the Clifford spectrum is either a connected surface, when the lattice’s Hamiltonian is more heavily weighted, 
or many disconnected spheroids, when the lattice’s position operators are more heavily weighted. In the 
case of the latter, the Clifford spectrum is responding directly to the locations of the individual lattice 
sites in the system, yielding these many disconnected surfaces centered near each site. In contrast, when 
the position operators are de-emphasized, the Clifford spectrum reveals information about the lattice as 
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a whole, with the single spheroid in the Clifford spectrum being associated with this lattice’s well-known 
chiral edge states [6].

4. The K-theory of the Clifford resolvent set

In many examples with d ≥ 3 the Clifford spectrum of (A1, . . . , Ad) is a (d −1)-dimensional surface in Rd. 
It is frequently possible to associate a K-theory element to the connected components of the complement 
of the Clifford spectrum. This is typically in KOj(R) and so is often computed as an integer or element of 
Z/2Z. Here, we will only need integer invariants. These invariants are (up to an isomorphism) computed as 
some multiple of

sig (Lλ(A1, . . . , Ad))

where we take sig(L) to indicate signature, which for a Hermitian, invertible matrix L is the difference 
between the number of positive and of negative eigenvalues. Here we do need to specify a particular choice 
of the γj . These need to form an irreducible representation of the Clifford relations. When d is odd we need 
to make an arbitrary choice of which irreducible representation to use. The other choice just flips the sign 
of the signature.

We know [22] that sig (Lλ(A1, . . . , Ad)) = 0 when |λ| is large or when the Aj commute with each other. 
The index can only change when λ crosses the Clifford spectrum, and is thus constant on the connected 
components of the Clifford resolvent. For a discussion of how this index might serve as a sort of K-theory 
charge of a D-brane, see [2].

A simple example, following [16], will illuminate this phenomenon. For d = 3 the choice we make for the 
three γj is to use the Pauli spin matrices,

γ1 = σx =
[

0 1
1 0

]
, γ2 = σy =

[
0 −i

i 0

]
, γ3 = σz =

[
1 0
0 −1

]
.

The easiest way to understand this example is to first examine symmetries. If U = [uij ] ∈ O(d) has 
determinant one then

γ̂j =
d∑

r=1
ujrγr

form not just a representation of the Clifford relations, but a representation that is unitarily equivalent to 
the original representation. Thus the Λ(γ1, γ2, γ3) has rotational symmetry. The proof of Lemma 2.1 works 
for points in the Clifford resolvent, and shows the following.

Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C) and that U ∈ SO(d). Suppose λ ∈ Rd. 
The d matrices

Âj =
∑
s

ujsAs

are also Hermitian, and if λ /∈ Λ (A1, . . . , Ad) then Uλ /∈ Λ 
(
Â1, . . . , Âd

)
and

sig (Lλ(A1, . . . , Ad)) = sig
(
LUλ(Â1, . . . , Âd)

)
,

again following from unitary equivalence. Thus we can improve our earlier theorem.
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Theorem 4.1. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C), that U ∈ SO(d). Let

Âj =
∑
s

ujsAs.

If there exists Q ∈ U(n) such that

QÂjQ
∗ = Aj

for all j then

λ ∈ Λ (A1, . . . , Ad) ⇐⇒ Uλ ∈ Λ (A1, . . . , Ad)

and if λ /∈ Λ (A1, . . . , Ad) then

sig (Lλ(A1, . . . , Ad)) = sig (LUλ(A1, . . . , Ad)) .

Theorem 4.2. The Clifford spectrum of (γ1, γ2, γ3) is the unit sphere. Moreover

μC
λ (γ1, γ2, γ3) = ||λ| − 1|

and

sig (Lλ(γ1, γ2, γ3)) =
{

2 if |λ| < 1
0 if |λ| > 1

.

Proof. By Theorem 4.1 we need only deal with the special case λ = (0, 0, z). We find that

L(0,0,z)(γ1, γ2, γ3) = σx ⊗ σx + σy ⊗ σy + (σz − zI) ⊗ σz

=

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
−z 0 0 0
0 −z 0 0
0 0 z 0
0 0 0 z

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 − z 0 0 0
0 −1 − z 2 0
0 2 −1 + z 0
0 0 0 1 + z

⎤
⎥⎥⎥⎦ .

This has spectrum
{

1 ± z,−1 ±
√
z2 + 4

}
and the results follow. �

This result can be generalized in at least two ways. The Pauli spin matrices can be replaced by generators 
(X1, X2, X3) of a fuzzy sphere. In that case [2], the Clifford spectrum and signature come out the same, 
but as the matrix size increases the norms of the commutators [Xj , Xk] decrease. We will generalize this is 
a different direction, calculating Λ(γ1, . . . , γd) for higher d.
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To illuminate the proof of the general case we look at the effect of conjugating L(0,0,z)(γ1, γ2, γ3) by the 
unitary

Q = 1√
2

⎡
⎢⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0

⎤
⎥⎥⎥⎦ . (3)

We find

Q (σx ⊗ σx)Q∗ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎦

Q (σy ⊗ σy)Q∗ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎥⎦

Q (σz ⊗ σz)Q∗ =

⎡
⎢⎢⎢⎣
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎥⎦

Q (−zI ⊗ σz)Q∗ =

⎡
⎢⎢⎢⎣

0 0 0 −z

0 0 −z 0
0 −z 0 0
−z 0 0 0

⎤
⎥⎥⎥⎦

and so QL(0,0,z)(γ1, γ2, γ3)Q∗ breaks again into 2-by-2 blocks, specifically
[

1 −z

−z −3

]
,

[
1 −z

−z 1

]
.

Notice that Q is a matrix whose columns are joint approximate eigenvalues of σx ⊗ σx and σy ⊗ σy. It also 
diagonalizes σz ⊗ σz since σz = iσyσx and so

σz ⊗ σz = − (σy ⊗ σy) (σx ⊗ σx) .

5. Conventions for representations of the Clifford relations

The minimal representation of the Clifford relations is unique when d is even. When d is odd we know 
γd will be a scalar multiple of a product of the other γj . We need to specify which multiple to determine 
which of the two irreducible representations we are using.

If γ1, . . . , γd is our choice for an irreducible representation for some odd d, we can get to a representation 
α1, . . . , αd+2 by using

αj = γj ⊗ σx, (j ≤ d)

αd+1 = I ⊗ σy,

αd+2 = I ⊗ σz.
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If we have

γd = εdγd−1 · · · γ2γ1

then

εd+2αd+1 · · ·α2α1 = εd+2 (I ⊗ σy) (γd ⊗ σx) (γd−1 ⊗ σx) . . . (γ1 ⊗ σx)

= εd+2 (I ⊗ σy) (γd ⊗ σx)
(
(γd−1 · · · γ1) ⊗ σd−1

x

)
= εd+2 (γd ⊗ (−iσz))

(
ε−1
d γd ⊗ I

)
= −iεd+2ε

−1
d (I ⊗ σz)

= −iεd+2ε
−1
d αd+2

so we should set

εd+2 = iεd.

As a base convention, we are using γ1 = σx, γ2 = σy, γ3 = σz so γ3 = iγ2γ1 meaning

εd = i(d+3)/2. (4)

6. The Clifford spectrum of Clifford matrices

The case where d is even is rather boring, but we work out this case part way as some of the results will 
be helpful in the odd case.

Theorem 6.1. If d is even and γ1, . . . , γd is an irreducible representation of the Clifford relations then

Λ(γ1, . . . , γd) = {0}.

Proof. Let Gj = γj ⊗ γj so that

L0 = L0 (γ1, . . . , γd) =
d∑

j=1
Gj .

We want to show this is singular. The Gj are matrices of size 2d and they pairwise commute. Each Gj is 
Hermitian and squares to one, so the joint spectrum of (G1, . . . , Gd) is a subset of {±1}×d. Since replacing a 
single γj by −γj leads to another representation of the Clifford relations, unitarily equivalent to the original, 
there is a unitary by which we can conjugate to fix all the Gj except the one that is negated. Similarly we 
can exchange a pair, γj with γk, and so get another unitary whose action swaps Gj and Gk. Thus the joint 
spectrum must have the same multiplicity at all points of {±1}×d and so that common multiplicity must 
be one. That means there is an orthonormal basis

{
bp | p ∈ {±1}×d

}
(5)

such that

Gjbp = pjbp (1 ≤ j ≤ d).
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Thus the spectrum of L0 consists only of even numbers, including zero. An eigenvalue of 0 will arise from 
every p that has an equal number of −1 and +1 coordinates.

Notice that in the basis given in (5) is, up to order, the unique basis in which the localizer at zero becomes 
diagonal. In the case d = 3 these vectors are the columns of Q in (3). For the general case we just need to 
know we have such a basis.

We want to show that there are no points in the Clifford spectrum besides 0. By the discussion in 
Section 2 we know that Theorem 2.2 applies. Thus it suffices to consider λ equal to (x, 0, . . . 0). If we set 
H = I ⊗ γ1 then

L(x,0,...0) (γ1, . . . , γd) =
∑

Gj − xH.

Notice that G1H = HG1 and GjH = −HGj for j ≥ 2. Thus

G1Hbp = HG1bp = H (p1bp) = p1Hbp

and, for j ≥ 2,

GjHbp = −HGjbp = −H (pjbp) = −pjHbp.

The joint eigenspaces are one dimensional so we know there is a unit scalar θp so that

Hbp = θpbp̃

where

p̃ = (p1,−p2,−p3, . . . ,−pd).

Since H2 = I we find that

bp = H2bp = H(θpbp̃) = θpθp̃bp

thus proving that θp = θp̃. Thus, in this basis, we know that L(x,0,...0) (γ1, . . . , γd) decomposes into 2-by-2
blocks, one block for each pair {p, p̃}. To avoid a double count we assume

s =
n∑

j=2
pj ≥ 1

(notice s must be odd). The corresponding block is

[
p1 + s −θpx

−θpx p1 − s

]
.

This block has determinant

−x2 +
(
p2
1 − s2) = −x2 +

(
1 − s2) .

Since 1 − s2 ≤ 0 this block can be singular only when s = 1 and x = 0. �
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When d is odd we can build on what we learned in the even case. The exception is when d = 1. To 
get a zero sphere we would need a generator of the full Clifford algebra C ⊕ C, an Hermitian matrix with 
spectrum {−1, 1}. For larger d we need to use an irreducible representation of the Clifford algebra to be 
able to see the K-theory.

Theorem 6.2. If d ≥ 3 is odd and γ1, . . . , γd is an irreducible representation of the Clifford relations then

Λ(γ1, . . . , γd) = Sd−1,

the unit sphere in Rd. Moreover

sig (Lλ(γ1, . . . , γd)) =
(

d− 1
1
2 (d− 1)

)

if 0 ≤ |λ| < 1 and this signature is zero for |λ| > 1.

Proof. In this case, we can assume γ1, . . . , γd−1 satisfy the conditions of the last theorem, so we use the 
orthonormal basis

{
bp | p ∈ {±1}×(d−1)

}
such that

Gjbp = pjbp (1 ≤ j ≤ d− 1).

We have also to consider Gd = γd ⊗ γd. According to (4) we will have

Gd = (−1)
d−1
2

∏
j<d

Gj .

This means that

L0 = L0 (γ1, . . . , γd) =
d∑

j=1
Gj

has still bp as an eigenvector, but now with eigenvalue

α(p) =
d−1∑
j=1

pj + (−1)
d−1
2

d−1∏
j=1

pj .

These eigenvalues are now odd so L0 is now nonsingular. We again have rotational symmetry so we can 
restrict our attention to λ of the form (x, 0, . . . , 0). The localizer

L(x,0,...0) (γ1, . . . , γd)

again breaks into 2-by-2 blocks, where the blocks are

Bp =
[
α(p) −θpx

−θpx α(p̃)

]
,
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where

p̃ = (p1,−p2,−p3, . . . ,−pd−1).

This block has determinant α(p)α(p̃) − x2.
We need to figure out the positive values of α(p)α(p̃) at p. We first compute

α(p̃) = 2p1 −
d−1∑
j=1

pj − (−1)
d−1
2

d−1∏
j=1

pj

= 2p1 − α(p).

The only way to avoid having α(p) and α(p̃) of opposite signs is to have α(p) = p1 = ±1. When this 
happens, the block Bp has eigenvalues 1 ± x. Thus L(x,0,...0) (γ1, . . . , γd) is singular only when x = ±1, so 
the Clifford spectrum is (by symmetry) the unit sphere.

As to the signature, we need only compute this at λ = 0. We first look for all solutions to |α(p)| = 1. If 
there are k occurrences of −1 in p1, . . . , pd−1 then

α(p) = (d− 1) − 2k + (−1)
d−1
2 (−1)k.

The product works out as ±1 so k must be a small range, specifically

1
2 (d− 1) − 1 ≤ k ≤ 1

2 (d− 1) + 1.

When k = 1
2 (d − 1) we find

(d− 1) − 2k = 0

(−1)
d−1
2 (−1)k = 1

so we have a solution with α(p) = 1. When k = 1
2 (d + 1) we find

(d− 1) − 2k = −2

(−1)
d−1
2 (−1)k = −1

which we do not have a solution. When k = 1
2(d − 3) we find

(d− 1) − 2k = 2

(−1)
d−1
2 (−1)k = −1

and so have a solution with α(p) = 1. There are no solutions with α(p) = −1.
If we add the condition that p1 = α(p) = 1 we find that p �→ p̃ swaps the two types of solutions. Thus we 

need only count the solutions with k = 1
2 (d − 1). Let us count the solutions with p1 = 1 and k = 1

2 (d − 1). 
Here we need to pick the places for −1 out of d − 2 places, so there are

(
d− 2

1
2 (d− 1)

)

values for p here. This is also the number of blocks with non-zero signature. Each has block has index 2 so 
the overall signature is
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2
(

d− 2
1
2 (d− 1)

)
=

(
d− 1

1
2 (d− 1)

)
. �

Software to numerically verify the value of the signature, for d up to about 11, is available on GitHub 
[4].

7. Spectrum and index of a 4D system

There is still much we do not know about almost commuting matrices, and some of what we do know is 
nonconstructive. We know that Lin’s theorem [20] states that for every pair of almost commuting Hermitian 
matrices there is close-by a pair of commuting Hermitian matrices. The proofs of this theorem are sufficiently 
non-constructive that we do not have any reasonable algorithm to find the nearby commuting pair. For three 
Hermitian matrices, the result fails; the essential example that shows this is nice and constructive, as it is 
just the three matrices generating a fuzzy sphere [14]. For real symmetric matrices, we have a real version 
of Lin’s theorem [25], but we do not know if the real version of Lin’s theorem holds for three matrices. As 
we show in this section, we pick up a K-theoretical obstruction for five real matrices, so we know that the 
real version fails in this case. There is an example [3, §6] that shows this obstruction in nontrivial, but the 
prior example in that study is far from constructive.

There are abstract results [3, §4-5] related to bivariant K-theory for real C∗-algebras that tell us there 
are five real symmetric matrices of (A1, . . . , A5) norm one with

‖[Aj , Ak]‖ (6)

and ∥∥∥∥∥∥
∑
j

A2
j − I

∥∥∥∥∥∥ (7)

arbitrarily small, with the property that these are not close to five commuting real symmetric matrices. The 
obstruction is K-theoretical and can be expressed as the fact that

L0(A1, . . . , A5)

has nontrivial signature. From this we can conclude that

Λ(A1, . . . , A5)

is very similar to a four-sphere. We can say it is a compact set that separates the origin from infinity and 
that it is close to the unit sphere. We cannot rule out a union of concentric spheres, for example. More 
critically, it is just about impossible to unwind the homotopy arguments used in E-theory so we have no 
way of writing down these matrices.

A possible construction of such matrices is to utilize the theoretical models of 4D topological insulators 
that have a real Hamiltonian, from [29, §3], and then truncate these models to be finite. By the results of 
[24] we know that if we use very large models, these will have the correct K-theory and have the quantities 
in (6) and (7) as small as desired. Potentially, this might only work with matrices so large we cannot even 
store them on a computer.

In this section we will show that this is a somewhat practical approach, in that the K-theory comes out to 
be as expected in small models. To get commutators that are truly small, say less than 1/100, might require 
a large computer, but should be possible if one is curious enough. We cannot prove that the K-theory stays 
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nontrivial for all models larger than the one we work with, but past experience indicates that this should 
be the case.

To demonstrate the appearance of higher dimensional spheres in the Clifford spectrum of physical systems, 
we consider a 4D tight-binding lattice that has been previously realized in an electric circuit [27,34]. This 
model has four sites per unit cell, on which the annihilation operators can be labeled as am,n,j,l, bm,n,j,l, 
cm,n,j,l, dm,n,j,l, where the indices specify the unit cell in all four dimensions. The corresponding creation 
operators are given by the conjugate transpose of these operators (again denoted using physics notation), 
a†, b†, c†, d†. The lattice’s Hamiltonian in the standard tight-binding basis can be divided into four sets of 
terms, the on-site energies

Hon = M
∑

m,n,j,l

(
a†m,n,j,lam,n,j,l + b†m,n,j,lbm,n,j,l − c†m,n,j,lcm,n,j,l − d†m,n,j,ldm,n,j,l

)
, (8)

the nearest neighbor couplings within a single unit cell

HNN,in = −t
∑

m,n,j,l

(
c†m,n,j,lam,n,j,l − b†m,n,j,ldm,n,j,l + d†m,n,j,lam,n,j,l + b†m,n,j,lcm,n,j,l

)
+ H.c., (9)

the nearest neighbor couplings between different unit cells

HNN,out = −t
∑

m,n,j,l

(a†m+1,n+1,j,lcm,n,j,l − d†m+1,n+1,j,lbm,n,j,l + c†m−1,n,j,lam,n,j,l

− b†m−1,n,j,ldm,n,j,l + a†m,n,j+1,l+1dm,n,j,l + c†m,n,j+1,l+1bm,n,j,l

+ d†m,n,j−1,lam,n,j,l + b†m,n,j−1,lcm,n,j,l) + H.c., (10)

and the longer-range couplings

HLR = −t1
∑

m,n,j,l

(a†m+1,n+1,j+1,l+1am,n,j,l + b†m+1,n+1,j+1,l+1bm,n,j,l

− c†m+1,n+1,j+1,l+1cm,n,j,l − d†m+1,n+1,j+1,l+1dm,n,j,l) + H.c.. (11)

Then, the full lattice Hamiltonian is given by

H = Hon + HNN,in + HNN,out + HLR. (12)

In these equations, the notation “+H.c.” is used to indicate that every term’s Hermitian conjugate is also 
included, e.g., if ta†m,n,j,lbm′,n′,j′,l′ is included, then so is t̄b†m′,n′,j′,l′am,n,j,l.

In the tight-binding basis, this 4D lattice’s position operators X1,2,3,4 are simply diagonal matrices, in 
which each diagonal element [Xj]kk is the position in the jth dimension of the kth unit cell. For simplicity 
for the examples considered in Figs. 7.1 and 7.2, all four lattice sites in each unit cell are assigned the same 
spatial coordinate, and unit cells are separated by the same lattice constant a in all four spatial directions. 
Thus, we can form the 4D tight-binding lattice’s spectral localizer as

Lλ=(x1,x2,x3,x4,E)(X1, X2, X3, X4, H) =
4∑

j=1
κ (Xj − λj) ⊗ Γj + (H − λ5) ⊗ Γ5. (13)

Here, we are using the d = 5 representation of the Clifford relations defined as
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Fig. 7.1. (a) Localizer gap μC
λ for a 5-by-5-by-5-by-5 4D class AI lattice whose Hamiltonian is given by Eq. (12), with t1 = 0.8t and 

m = t/2. Here, only x1 is varied, with x2 = x3 = x4 = 0, and κ = 0.1(t/a), where a is the lattice constant. (b) Localizer index for 
the same system. (c) Spectral flow of the 20 eigenvalues of Lλ closest to zero over the same position variation. (d)-(i) Slices of the 
localizer gap (top) and localizer index (bottom) over the surfaces xi and xj , with i, j = 1, 2, 3, 4. Any coordinate not shown in a 
given plot is fixed to zero. The positions shown are varied between 0 and 3a. The lattice is centered at the origin.

Γ1 =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎦ , Γ2 =

⎡
⎢⎢⎢⎣

0 0 −i 0
0 0 0 −i

i 0 0 0
0 i 0 0

⎤
⎥⎥⎥⎦ , Γ3 =

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦

Γ4 =

⎡
⎢⎢⎢⎣

0 0 0 −i

0 0 i 0
0 −i 0 0
i 0 0 0

⎤
⎥⎥⎥⎦ , Γ5 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎦ .

Finally, we note that the scaling parameter κ in Eq. (13) also serves to ensure that the spectral localizer 
has consistent units, and thus κ has units of energy/distance.

For M, t, t1 ∈ R, this lattice is in class AI of the Altland-Zirnbauer classification [29,18,28], and possesses 
bosonic time-reversal symmetry T 2 = +1, but no other local symmetries. Direct calculation of the system’s 
Clifford spectrum reveals that it is a 4-dimensional surface that is approximately S4 (i.e., a 4D spheroid), 
see Fig. 7.1d-i. Moreover, the K-theory element associated with this lattice’s Clifford spectrum is a local 
marker equivalent for the second Chern number, and can be calculated as

indλ(X1, X2, X3, X4, H) = 1
2sig(Lλ(X1, X2, X3, X4, H)). (14)

For class AI, the time-reversal symmetry fixes this index to always be even. As can be seen in Fig. 7.1, 
inside of the closed 4D surface that forms the Clifford spectrum, the index is seen to be 2, while outside the 
index is 0.

Even with the small system size, the commutators are substantially smaller than in the Clifford matrix 
examples in Section 6. We need to normalize things, as none of these matrices have norm one. Numerical 
estimates tell us
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Fig. 7.2. (a) Localizer gap μC
λ for a 5-by-5-by-5-by-5 4D class A lattice whose Hamiltonian is given by Eq. (12), with t1 = 0.8e0.1iπt

and M = t/2. Here, only x1 is varied, with x2 = x3 = x4 = 0, and κ = 0.1(t/a), where a is the lattice constant. (b) Localizer 
index for the same system. (c) Spectral flow of the 20 eigenvalues of Lλ closest to zero over the same position variation. (d)-(i) 
Slices of the localizer gap (top) and localizer index (bottom) over the surfaces xi and xj , with i, j = 1, 2, 3, 4. Any coordinate not 
shown in a given plot is fixed to zero. The positions shown are varied between 0 and 3a. The lattice is centered at the origin.

‖[Xj , H]‖ /(‖Xj‖ ‖H‖)

are approximately equal to 0.29 for odd j and 0.21 for even j and that each Xj has norm 2.0 and finally 
that H has norm close to 4. In order to get non-trivial K-theory we have to rescale these, replacing Xj by 
(0.1)Xj . For much larger systems size, we have a theorem [24] to tell us that the index of the localizer at 
the origin will equal the second Chern number. There is substantial numerical evidence that this equality 
will hold for much smaller system sizes. See, for example, [22,23,26].

By relaxing the reality of the coupling coefficients and choosing t1 ∈ C, the lattice’s time-reversal sym-
metry is broken and it instead falls into class A of the Altland-Zirnbauer classification, which represents 
systems with no local symmetries. As such, its topological index determined by Eq. (14) can now be any 
integer, and odd values of this index are seen in Fig. 7.2. For this system, the Clifford spectrum is two 
intersecting 4D spheroids, that merge together as time-reversal symmetry is restored. For choices of λ in 
the interior of both spheroids, the index remains 2, while the index outside of both surfaces is 0. However, 
in between the two surfaces, a region that was inaccessible in the time-reversal symmetric system, the index 
is 1.

A system with width of 5 lattice units is too small to try the methods of [24] to create a “fuzzy sphere” 
with (6) and (7) both small and all the matrices normalized to have norm one. To do this properly, we would 
want a round sample in place of a square sample, and we would use a larger system. By keeping the position 
observables to be of norm one as the system size grows, we would get smaller and smaller commutators.

Instead, we have found strong numerical evidence that the Clifford spectrum for the observables in our 
small system looks somewhat like a four-sphere. In particular, it seems that a ray leaving the origin in any 
direction while staying at energy zero will cross the Clifford spectrum just once for t1 ∈ R (Fig. 7.1), or 
once or twice for t1 ∈ C (Fig. 7.2). The hope is that someone will see a pattern here, find a method to 
produce fuzzy four-spheres based on real-symmetric matrices, and prove that the Clifford spectrum of those 
matrices is a four-sphere.
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All of the algorithms necessary to reproduce these numerical results are available on GitHub [4].

8. Open problems and future directions

In the typical application in physics the matrices involved are D matrices Xj that specify position and 
the Hamiltonian H. In this case, the spectral localizer at zero is comprised of H ⊗ eD+1 and 

∑
Xj ⊗ ej . 

In the continuum the latter is the Fourier transform of a standard Dirac operator. The term involving the 
Hamiltonian can be seen as a perturbation of the Dirac operator. In this way, one can deduce the structure 
of the spectrum of this perturbed Dirac operator [12,30,31].

There are, however, many other incompatible observables to which we have want to apply the localizer, 
such as momentum operators and current operators. We would like to have the basic theory of the Clifford 
spectrum built up to better support this ongoing research in mathematical physics. To this end, we present 
some conjectures. Some of these may require techniques from geometry or other areas of mathematics outside 
of operator theory.

There are patterns emerging in the types of spaces that show up as the Clifford spectrum in examples. 
For the most part, these patterns have not been explained. The following conjecture is due to Kisil [16]. 
Kisil sketched a possible proof, but the conjecture seems to be still open.

Conjecture 8.1. The Clifford spectrum Λ(A1, . . . , Ad) is always nonempty, given A1, . . . , Ad Hermitian ma-
trices in Mn(C).

This is true for d = 2, and in the commutative case, since in each case the Clifford spectrum is equal to 
a standard form of spectrum [22].

In all the examples found so far, the Clifford spectrum of d matrices in Mn(C) either has cardinality n
or less or contains a two-dimensional space.

Conjecture 8.2. If the Clifford spectrum Λ(A1, . . . , Ad) for Hermitian matrices in Mn(C) is finite then it 
has cardinality at most n.

Conjecture 8.3. The Clifford spectrum Λ(A1, . . . , Ad) of Hermitian matrices in Mn(C) is never a one-
manifold.

While we have not seen an example where the Clifford spectrum is a non-orientable manifold, we believe 
such an example can exist. Indeed, there may be matrix models based on recent physical experiments [19,33]
that lead to this.

We end with a more open-ended challenge.

Problem 8.4. Define a fuzzy four-sphere, similar to the usual fuzzy two-sphere, that can be generated by 
five almost commuting real-symmetric matrices, with arbitrarily small commutators possible. This should 
have Clifford spectrum equal to the standard unit four-sphere and at points inside this sphere the localizer 
should have nonzero signature.
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