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ABSTRACT
Short-ranged and line-gapped non-Hermitian Hamiltonians have strong topological invariants given by an index of an associated Fredholm
operator. It is shown how these invariants can be accessed via the signature of a suitable spectral localizer. This numerical technique is
implemented in an example with relevance to the design of topological photonic systems, such as topological lasers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150995

I. OVERVIEW
In a series of recent works, Terry Loring and one of the authors1,2 proved that integer-valued strong topological invariants of solid state

systems can be computed as the signature of suitable finite-volume approximations of the so-called spectral localizer. Roughly stated, the
localizer is the sum of the Dirac operator with the Hamiltonian as a topological mass term. This provides a very effective numerical tool for
the local computation of these invariants. The technique has been extended to weak invariants,3 spin Chern numbers,4 and Z2-invariants in
the presence of real symmetries5 as well as to the detection of local topological data in semimetals6 and metals.7,8 All these works suppose
that the Hamiltonian is self-adjoint. It is the purpose of this note to show that the spectral localizer can also be used in non-Hermitian
topological systems with a line-gap. While the spectral localizer has been recently used to study a specific class of non-Hermitian phenomena
that can manifest in anomalous Floquet topological insulators,9 this approach still employed a self-adjoint spectral localizer. The literature on
non-Hermitian systems has grown very rapidly in the recent years, as non-Hermitian Hamiltonians are relevant for dissipative, bosonic, and
photonic systems, among others. There are numerous physics reviews available10–14 that contain an abundance of further references.

Let us directly outline the construction of the non-Hermitian spectral localizer and its main properties, focusing on bounded Hamilto-
nians H on a d-dimensional tight-binding Hilbert space H = ℓ2

(Zd,CL
) with L internal degrees of freedom. The Hamiltonian is supposed to

be short-range in the sense that there is α > d + 2 and a constant C such that

∥⟨n∣H∣m⟩∥ ≤
C

1 + ∣n −m∣α
, n, m ∈ Zd, α > d + 2. (1)

The second main assumption is that H has a line-gap along the imaginary axis quantified by

g = inf
s∈R
∥(Hs
)
−1
∥
−1,

where Hs
= H + ıs1. One can readily check that g > 0 if and only if H has no spectrum on the imaginary axis. If the resolvent set contains

a different straight line, one can shift and rotate the Hamiltonian into the above standard form. The line-gap allows one to define a Riesz
projection
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P = ∮
γ

dz
2πı
(z1 −H)−1

onto the spectrum with a negative imaginary part by using any path γ encircling it. Even though P is merely an idempotent and not necessarily
self-adjoint, it is possible that P contains topological content in the form of the so-called strong invariant. Let us introduce this invariant as
an index of a Fredholm operator. Later on, its connections with more widely used strong Chern numbers will be mentioned. The index is
introduced using the (dual) Dirac operator

D =
d

∑
j=1

Γ jX j ,

where Γ1, . . . , Γd form an irreducible self-adjoint representation of the Clifford algebra with d generators and X1, . . . , Xd are the self-adjoint
position operators on H = ℓ2

(Zd,CL
). The irreducible representation acts on Cd′ with d′ = 2⌊

d
2 ⌋ so that D acts on H⊗Cd′ . Note that D

has compact resolvent. In the case that d is even, there exists a self-adjoint unitary Γ = Γd+1 anti-commuting with Γ1, . . . , Γd. In a suitable
representation, Γ is diagonal and D is off-diagonal,

Γ =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

, D =
⎛
⎜
⎝

0 D∗0
D0 0

⎞
⎟
⎠

.

The Hamiltonian H ≅ H ⊗ 1 is naturally extended to H⊗Cd′ . In Sec. III, it will be shown that the short-range Hamiltonian leaves the domain
of D invariant and that [D, H] extends to a bounded operator. In other words,15,16 a short-range Hamiltonian H is differentiable with respect
to D and the Dirac operator D specifies a Fredholm module for H (or more precisely the algebra of polynomials in H), which is even/odd if
d is even/odd. Let us focus on even d; then, the Dirac phase is introduced as the unitary operator F0 = D0∣D0∣

−1 (strictly speaking, D0 has a
d′-dimensional kernel, but on this subspace, F0 can simply be set to the identity). Then, a modification of standard arguments discussed in
Sec. III shows that the restriction PF0P∗∣Ran(P) of F0 to the Hilbert space Ran(P) is a Fredholm operator. Its index is referred to as the even
strong index pairing,

Ind(PF0P∗∣Ran(P)).

By construction, it is a homotopy invariant. Moreover, if H is periodic or, more generally, a homogeneous system, then an index theorem17

shows that the index pairing is equal to the dth Chern number Chd(P), which, in turn, is equal to the Chern number Chd(Q) of the self-adjoint
projection Q onto Ran(P) (for the latter, see Ref. 18 or use the homotopy spelled out in Sec. VI). Note that this also implies that the above
index is equal to Ind(QF0Q∣Ran(Q)). Let us also add that, in general, there is likely not a direct physical interpretation of the index as, say, the
Hall conductance for Hermitian Hamiltonians. However, a non-trivial index implies the existence of boundary states. While this article does
not contain a proof of such a statement, it is illustrated in the numerical example in Sec. II.

As already stated above, this paper is about a non-Hermitian generalization of the spectral localizer and the focus will be on even
dimension d. For a tuning parameter κ > 0, the even non-Hermitian spectral localizer is introduced by

Lκ(H) =
⎛
⎜
⎝

−H κD∗0
κD0 H∗

⎞
⎟
⎠

. (2)

This operator acts on H⊗Cd′ and is here written in the grading of Γ. Note that for self-adjoint H, this reduces to the even spectral localizer
used in Refs. 2 and 3. Clearly, one has

Lκ(Hs
) = Lκ(H) − ı s 1. (3)

This indicates that Lκ(H) may have a line-gap, a fact that can, indeed, be confirmed for κ sufficiently small (see Theorem 1). Next, let us
introduce finite-volume approximations, just as in prior works. Let (H⊕H)ρ be the range of the finite-dimensional projection χ(∣D∣ ≤ ρ),
and let πρ : H⊕H→ (H⊕H)ρ be the associated surjective partial isometry. Note that 1ρ = πρπ∗ρ is then the identity on (H⊕H)ρ. For any
operator A acting on H⊕H, denote its compression to (H⊕H)ρ by Aρ = πρAπ∗ρ . The finite-volume non-Hermitian spectral localizer is then
given by Lκ(H)ρ and denoted as Lκ,ρ(H) = Lκ(H)ρ.

Theorem 1. Suppose that H is short range, and set N = max{∥[D, H]∥, ∥[∣D∣, H]∥} <∞, where H ≅ H ⊗ 1 and ∣D∣ = (D∗D)
1
2 is the

absolute value of the Dirac operator. If

J. Math. Phys. 64, 082102 (2023); doi: 10.1063/5.0150995 64, 082102-2

Published under an exclusive license by AIP Publishing

 08 August 2023 15:19:02

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

κ ≤ cκ
g3

∥H∥N
and cρ

g
κ
(1 +

∥Im(H)∥
g

) ≤ ρ (4)

for cκ = 1
12 and cρ = 6, then Lκ,ρ(H) has a quantitative line-gap on the imaginary axis in the sense that, for all s ∈ R,

Lκ,ρ(Hs
)
∗Lκ,ρ(Hs

) ≥
g2

4
1ρ (5)

and

Ind(PF0P∗∣Ran(P)) =
1
2

Sig(Lκ,ρ(H)), (6)

where here the signature denotes the difference of the joint algebraic multiplicities of eigenvalues with positive and negative real parts.

Let us make a few comments. First of all, compared with earlier works, the second bound in (4) has a supplementary factor 1 + ∥Im(H)∥
g ,

which is needed to control the non-Hermitian part of the localizer. It is not needed for the proof of bound (5) in Sec. IV, but merely for the
proof of the constancy of the signature in Sec. V. Numerical implementation shows that (4) is far from optimal, and indeed, in applications, one
rather verifies that the line-gap of Lκ,ρ(H) is open before confidently using its signature. Let us also stress that the supplementary factor does
not alter the invariance of the two bounds (4) under scaling H ↦ λH, which implies g ↦ λg and κ↦ λκ, so that the condition on ρ remains
unchanged. As in all prior works, the constants cκ and cρ in (4) are not optimal, but rather a result of the method of proof and the choices
made in the proof. Second of all, it is, in general, not sufficient to compute the spectrum of the real partRe(Lκ,ρ(H)) = 1

2(Lκ,ρ(H) + Lκ,ρ(H)∗)
because H may be non-normal. However, as in applications, one typically only needs to consider relatively small ρ and thus relatively small
non-Hermitian matrices Lκ,ρ(H); this is not really a limitation, as shown in the examples in Sec. II. Third of all, let us mention that Appendix
describes two efficient techniques to access the signature: one via spectral flow and one by a Routh–Hurewitz theorem. Finally, let us note
that in the earlier works,2,16 only the constant ∥[D, H]∥ entered in the bounds, while here also the norm of the commutator [∣D∣, H] is of
relevance. Its boundedness can also be shown if H satisfies the short-range condition (1); see Sec. III. The Fredholm module is then referred
to as Lipshitz regular. An alternative way to guarantee the Lipshitz regularity automatically is to replace the Dirac operator D by D(1 +D2

)
−β

for some β > 0.19,20 The index pairing remains unchanged during the homotopy β′ ∈ [0,β]↦ D(1 +D2
)
−β′ . Clearly, also the signature in (6)

does not change as long as β is sufficiently small.
Until now, only the case of even dimension d was considered. For odd d and Hermitian systems, a strong topological invariant is only

defined if H has a chiral symmetry of the form JHJ = −H, where J = J∗ = J−1. Then, there are odd index pairings and odd Chern numbers,17

which can be computed with an odd spectral localizer.1 In Sec. VII, it will be explained that this story directly transposes to the study of
non-Hermitian line-gapped chiral Hamiltonians.

II. NUMERICAL IMPLEMENTATION
To provide an explicit example of the utility of the non-Hermitian generalization of the spectral localizer, let us consider a finite het-

erostructure comprised of two lattices in different topological phases. More specifically, suppose given a Haldane model over a bi-partite
honeycomb lattice Γ = ΓA ∩ ΓB,21 whose tight-binding model is

H =∑
nA ,nB

(M ∣nA⟩⟨nA∣ −M ∣nB⟩⟨nB∣) − t ∑
⟨nA ,mB⟩

(∣nA⟩⟨mB∣ + ∣mB⟩⟨nA∣)

− tc ∑
α=A,B

∑
⟨⟨nα ,mα⟩⟩

(eıϕ(nα ,mα) ∣nα⟩⟨mα∣ + e−ıϕ(nα ,mα) ∣mα⟩⟨nα∣). (7)

Here, the first sum runs over all sites in the lattice and is a staggered potential giving the A and B lattices opposite on-site energies M and
−M, the second sum is a kinetic energy with nearest neighbor coupling coefficient t, and the third sum is over next-nearest-neighbor pairs
and has a direction-dependent phase factor that breaks time-reversal symmetry with a periodic magnetic field, namely, ϕ(nα, mα) = ±ϕ with
a geometrically chosen sign.21 The Hamiltonian is known to have a spectral gap at 0 with a topological Fermi projection P for M ≪ tc, and it
is a topologically trivial insulator for tc ≪M (see Ref. 21 for the phase diagram). Furthermore, the model can be made lossy with absorption
strength μ if M is replaced by M ∓ ıμ on the A and B sublattices, respectively. Altogether, the heterostructure is made up of a topological
Haldane model in the central part, surrounded first by a ring of trivial insulator and then a ring of a lossy trivial insulator; see Fig. 1(a).

The choice of loss distribution around the lattice’s perimeter is guided by analogy to photonic systems as such systems are one of the most
common platforms where non-hermiticity can manifest in topological materials characterized by line-gaps.10,13,22 Unlike electronic systems,
for which free space is a trivial insulator, many photonic systems will radiate into their surrounding free-space environment. This radiation
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FIG. 1. (a) Diagram of the tight-binding heterostructure consisting of a topological insulating lattice in the center surrounded by a trivial insulator whose perimeter contains
loss. For the topological insulator, M = 0, tc = 0.5, and ϕ = ± π

2
. For the trivial insulator, M = 0.5

√
3 and tc = 0. Both lattices have t = 1. The black vertices are lossless,

while the gray vertices have μ = 0.2. (b) Local density of states for this heterostructure at E = 0. (c) Full complex spectrum of the heterostructure. (d) The localizer gap given
by the smallest of the absolute values of the real parts of the eigenvalues of Lκ(H, x, y), namely, min ∣Re(σ(Lκ(H, x, y)))∣. (e) Spatially resolved local index. The red region
shows where the index is non-trivial and equal to 1. (f) Real part of the spectral flow of Lκ,ρ(H, x, 0) as a function of position in x. The eigenvalue responsible for the index
change is highlighted in teal. (g)–(i) Full complex spectrum of Lκ(H, x, 0) for three different choices of x; the choices of x are indicated by orange dashed lines in (f). Again,
the eigenvalue responsible for the change in index is shown in teal. The scales of (a), (b), (d), (e), and (f) are the same, and κ = 0.1 for all spectral localizer calculations.

can be considered by surrounding a region of interest using an absorbing boundary condition, such as perfectly matched layers,23 which
necessarily makes the full system non-Hermitian. Heuristically, the purpose of the absorbing boundary condition is to replicate the infinite
extent of the environment in a finite simulation domain without introducing spurious reflections.24,25

The local density of states (LDOS) of the heterostructure at energy E = 0 is shown Fig. 1(b), and the complete spectrum is shown in
Fig. 1(c), for parameter values as described there. Note that essentially the only eigenvalues with very small imaginary part are the surface
states in the topological central part, as they are separated from the lossy region by the trivial insulator, which has an energy gap at E = 0.

The different local topologies can be identified in the finite non-Hermitian heterostructure using the local topological invariant (local
marker) given in (6) with a position shift x, y of the Dirac operator, namely, by the half-signature of

Lκ(H, x, y) =
⎛
⎜
⎝

−H κ((X − x) − ı(Y − y))

κ((X − x) + ı(Y − y)) H∗
⎞
⎟
⎠

,

where X and Y are the two position operators (denoted by X1 and X2 above), and there is no finite size restriction as all matrices are finite
here. The size of the line-gap of Lκ(H, x, y) at Re(E) = 0 is shown in Fig. 1(d), and the value of the half-signature as defined in Theorem 1
is shown in Fig. 1(e). This is computed by the spectral flow method described in Appendix by using the path t ∈ [0, T]↦ Lκ(H, x + t, y) and
the fact that Sig(Lκ(H, x + T, y)) = 0 for sufficiently large T, say, so that x + T lies outside of the boundary of the heterostructure. An example
of a spectral flow diagram for the real part of the spectrum is given in Fig. 1(f) where the eigenvalue responsible for the signature change is
readily visible. To complement the picture, Figs. 1(g)–1(i) show the full complex spectrum of Lκ(H, x, y) for three different values of x. Here,
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Figs. 1(g) and 1(i) correspond to the exterior and central regions where one clearly sees the line-gap at Re(E) = 0, which corresponds to the
part of the statement of Theorem 1 for the topological and trivial insulator, respectively. Finally, let us note that, as expected, in Fig. 1(d) the
local invariant changes near the interface between the two lattices due to the presence of the chiral interface-localized states visible in Fig. 1(b).

III. FREDHOLM PROPERTIES

Lemma 2. If H satisfies the short-range condition (1), then H leaves the domain of D invariant and the commutators [D, H] and [∣D∣, H]
extend to bounded operators.

Proof. As D2
= ∑

d
j=1 X2

j = X2, its domain is D(D) = {ψ ∈ H⊗Cd′ : ∑n∈Zd ∣n∣2∥ψn∥
2
<∞}. Now,

∑

n∈Zd

∣n∣2∥(Hψ)n∥
2
= ∑

n,m,k∈Zd

ψ∗k ⟨k∣H
∗
∣n⟩ ∣n∣2 ⟨n∣H∣m⟩ψm

≤ ∑

n,m,k∈Zd

∥ψk∥
C

1 + ∣n − k∣α
∣n∣2

C
1 + ∣n −m∣α

∥ψm∥

≤ ∑

n,m,k∈Zd

∥ψk∥
2 C

1 + ∣n − k∣α
∣n∣2

C
1 + ∣n −m∣α

≤ ∑

k∈Zd

∣k∣2∥ψk∥
2 sup

k′∈Zd

1
1 + ∣k′∣2

∑

n,m∈Zd

C
1 + ∣n − k′∣α

∣n∣2
C

1 + ∣n −m∣α

≤
⎛

⎝
∑

k∈Zd

∣k∣2∥ψk∥
2⎞

⎠
sup
k′∈Zd

1
1 + ∣k′∣2

∑

n∈Zd

C′(∣n − k′∣2 + ∣k′∣2)
1 + ∣n − k′∣α

,

which is bounded for ψ ∈ D(D) as α − 2 > d. Hence, Hψ ∈ D(D). Next, note that

⟨n∣[D, H]∣m⟩ = D(n) ⟨n∣H∣m⟩ − ⟨n∣H∣m⟩D(m) = D(n −m) ⟨n∣H∣m⟩,

where D(n) = ∑d
j=1 n jΓ j = ⟨n∣D∣n⟩. One has ∥D(n)∥ ≤

√
d ∣n∣ by the Cauchy–Schwarz inequality. Furthermore, it was used that H ≅ H ⊗ 1

commutes with Γj’s. Estimating the norm using Holmgren’s bound (which contains the maximum of two expressions, but they are bounded
in the same manner) gives

∥[D, H]∥ ≤ sup
n∈Zd
∑

m∈Zd

∥D(n −m)∥ ∥⟨n∣H∣m⟩∥ ≤ sup
n∈Zd
∑

m∈Zd

√
d ∣n −m∣

C
1 + ∣n −m∣α

,

which is bounded because α > d + 1. In order to bound the second commutator, let us set F = D∣D∣−1 and use

[∣D∣, H] = [F∗D, H] = [F∗, H]D + F∗[D, H].

As F is unitary, it is, hence, sufficient to show that [F∗, H]D extends to a bounded operator. Let us write out the matrix elements using
F(n) = ⟨n∣F∣n⟩,

⟨n∣[F∗, H]D∣m⟩ = (F(n)∗ − F(m)∗)D(m) ⟨n∣H∣m⟩.

Next, let us note the bound

∥F(n) − F(m)∥ ≤
√

d ∣
n
∣n∣
−

m
∣m∣
∣ ≤ 2

√
d ∣n −m∣ min{

1
∣n∣

,
1
∣m∣
},

which can be checked using the Cauchy–Schwarz inequality as above. Hence, again appealing to Holmgren’s bound gives

∥[F∗, H]D∥ ≤ sup
n∈Zd
∑

m∈Zd

∥F(n) − F(m))∥ ∥D(m)∥ ∥⟨n∣H∣m⟩∥

≤ sup
n∈Zd
∑

m∈Zd

2 d ∣n −m∣ min{
1
∣n∣

,
1
∣m∣
} ∣m∣

C
1 + ∣n −m∣α

,

which is bounded as can be seen by splitting the sum in ∣m∣ < ∣n∣ and ∣m∣ ≥ ∣n∣. ◻

Lemma 2 and its proof hold for all dimensions d. For even d, the operator F = D∣D∣−1 is off-diagonal with the off-diagonal entry given by
F0 = D0∣D0∣

−1, just as in Sec. I.
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Corollary 3. Let d be even. If H satisfies the short-range condition (1), then the commutators [P, F0] and [P∗, F0] are compact.

Proof. Given the results of Lemma 2, the compactness of [P, F0] follows directly from the standard arguments (e.g., in Theorem 10.1.4
in Ref. 16, which at no point depends on the self-adjointness of H; note that F there is denoted by F0 here). ◻

Now, let us construct Fredholm operators from P and F0. For this purpose, let us set

R = P(1 − (P∗ − P)2
)
− 1

2 ,

which exists as −(P∗ − P)2
= ∣P∗ − P∣2 ≥ 0. One, furthermore, readily checks that [P, (P∗ − P)2

] = 0 so that (P − P∗)2 and functions thereof
leave Ran(P) and Ran(P∗) invariant. Then, the (orthogonal) projection Q onto the range of P is given by

Q = RR∗ = P(1 + (P∗ − P)(P − P∗))−1P∗ = P(P∗P)−1P∗.

Proposition 4. If H satisfies the short-range condition (1), then RF0R∗ + (1 − RR∗) and PF0P∗∣Ran(P) are Fredholm operators and their
indices are equal.

Proof. First, let us note that

[R, F0] = [P, F0](1 − (P∗ − P)2
)
− 1

2 + P[(1 − (P∗ − P)2
)
− 1

2 , F0].

The first summand is compact by Corollary 3. To verify the compactness of the second summand, one can use the norm convergent Riemann
integral,

(1 − (P∗ − P)2
)
− 1

2 = ∫

∞

0

dλ
λ

1
2
(λ + 1 − (P∗ − P)2

)
−1,

which shows that

[(1 − (P∗ − P)2
)
− 1

2 , F0] = ∫

∞

0

dλ
λ

1
2
(λ + 1 − (P∗ − P)2

)
−1
[(P∗ − P)2, F0](λ + 1 − (P∗ − P)2

)
−1

is also compact, again by Corollary 3. Now, let us set T = RF0R∗ + (1 − RR∗). Then,

T∗T = RF∗0 R∗RF0R∗ + (1 − RR∗)

= RR∗F∗0 RF0R∗ + R[F∗0 , R∗]RF0R∗ + (1 − RR∗)

= RR∗F∗0 F0RR∗ + RR∗F∗0 [R, F0]R∗ + R[R, F0]
∗RF0R∗ + (1 − RR∗)

= 1 +QF∗0 [R, F0]R∗ + R[R, F0]
∗RF0R∗.

As the last two summands are compact, this implies the desired Fredholm property of T. As the two summands in T are orthogonal and one is
trivial (given by 1 − RR∗ = 1 −Q with vanishing index), one concludes that also RF0R∗∣Ran(Q) is Fredholm with same index as T. Furthermore,

Ind(RF0R∗ + (1 − RR∗)) = Ind(RF0R∗∣Ran(Q))

= Ind(P(1 − (P∗ − P)2
)
− 1

2 F0(1 − (P∗ − P)2
)
− 1

2 P∗∣Ran(P))

= Ind((1 − (P∗ − P)2
)
− 1

2 PF0P∗(1 − (P∗ − P)2
)
− 1

2 ∣Ran(P))

= Ind(PF0P∗∣Ran(P))

because (1 − (P∗ − P)2
)
− 1

2 is invertible and leaves Ran(P) and Ran(P∗) invariant. This proves the claim. ◻

IV. LINE-GAP OF THE SPECTRAL LOCALIZER
This section is entirely devoted to the proof of (5) under the condition that (4) holds. While the strategy is similar to earlier arguments,2,16

there are some novel difficulties linked to the non-Hermitian nature of the Hamiltonian and the spectral localizer that we hope to address
clearly in this section. For this reason, we merely restrict to the proof of (5), even though the very same strategy will be expanded (and thus to
some extend repeated) to a proof of the constancy of Sig(Lκ,ρ(H)) in Sec. V. Let us start from
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Lκ,ρ(Hs
)
∗Lκ,ρ(Hs

) =(Lκ,ρ(H) − sı1ρ)∗(Lκ,ρ(H) − sı1ρ)

=Lκ,ρ(H)∗Lκ,ρ(H) + s21ρ − 2sIm(Lκ,ρ(H))

=Lκ,ρ(H)∗Lκ,ρ(H) + s21ρ − 2s (Im(−Hρ)⊕ Im(H∗ρ )),

where Im(A) = 1
2ı(A − A∗) is the imaginary part of the operator A. Hence, one has for all s

Lκ,ρ(Hs
)
∗Lκ,ρ(Hs

) ≥ Lκ,ρ(H)∗Lκ,ρ(H) + (s2
− 2 ∥Im(H)∥ ⋅ ∣s∣)1ρ. (8)

Note that s2
− 2 ∥Im(H)∥ ⋅ ∣s∣ ≥ 0 for all s with ∣s∣ ≥ 2 ∥Im(H)∥. Thus, for the proof of (5), it is sufficient to show that, for all ∣s∣ ≤ 2 ∥Im(H)∥,

Lκ,ρ(Hs
)
∗Lκ,ρ(Hs

) ≥
g2

4
1ρ. (9)

Multiplying out, one finds

Lκ,ρ(Hs
)
∗Lκ,ρ(Hs

) = κ2D2
ρ + ∣(−Hs

ρ)⊕ (H
s
ρ)
∗
∣
2
+ κ(Dρ((−Hs

ρ)⊕ (H
s
ρ)
∗
) + ((−Hs

ρ)
∗
⊕Hs

ρ)Dρ)

= κ2πρD2π∗ρ + πρ((−Hs
)
∗
⊕Hs

)1ρ((−Hs
)⊕ (Hs

)
∗
)π∗ρ′ + κπρ

⎛
⎜
⎝

0 [H, D0]
∗

[H, D0] 0

⎞
⎟
⎠
π∗ρ ,

where the last step is based on the algebraic identity,

D((−Hs
)⊕ (Hs

)
∗
) + ((−Hs

)
∗
⊕Hs

)D =
⎛
⎜
⎝

0 [H, D0]
∗

[H, D0] 0

⎞
⎟
⎠

.

The first two summands in ∣Lκ,ρ(Hs
)∣

2 are non-negative, and on each, a quantitative (positive) lower bound will be proved below such that
the sum of the two is strictly positive; the third summand will then be shown to be a perturbation that does not spoil the positivity. For that
purpose, let us use an even differentiable function Gρ : R→ [0, 1] constructed in Refs. 2 and 16, which satisfies Gρ(x) = 1 for all ∣x∣ ≤ 1

2ρ and
Gρ(x) = 0 for all ∣x∣ ≥ ρ and for which, moreover, the Fourier transform Ĝ′ρ : R→ R of the derivative G′ρ has an L1-norm bounded by 8ρ−1.
Then (by Lemma 10.15 in Ref. 15), one has for all self-adjoint operators A and bounded operators B

∥[Gρ(A), B]∥ ≤
8
ρ
∥[A, B]∥. (10)

With this function, one can bound the first summand by showing

κ2πρD2π∗ρ ≥ g2πρ(1 −Gρ(D)2
)π∗ρ .

Indeed, using a rough version of the second hypothesis in (4), one has κ2
≥ g2
( 1

2ρ)
−2 so that the function Gρ satisfies for x ∈ [ 1

2ρ, ρ]

κ2x2
≥ g2
(

1
2
ρ)−2x2

≥ g2
≥ g2
(1 −Gρ(x)2

)

since 0 ≤ Gρ(x) ≤ 1. On the other hand, for x ∈ [0, 1
2ρ], the bound holds trivially since there 1 −Gρ(x)2

= 0. In the second summand, one uses
the lower bound 1ρ ≥ Gρ(D)2, implying that

∣(−Hs
ρ)⊕ (H

s
ρ)
∗
∣
2
≥ πρ((−Hs

)
∗
⊕Hs

)Gρ(D)2
((−Hs

)⊕ (Hs
)
∗
)π∗ρ

= πρGρ(D)∣(−Hs
)
∗
⊕Hs

∣
2Gρ(D)π∗ρ

+ πρ((−Hs
)
∗
⊕Hs

)Gρ(D)[Gρ(D), ((−Hs
)⊕ (Hs

)
∗
)]π∗ρ

+ πρ[((−Hs
)
∗
⊕Hs

), Gρ(D)]((−Hs
)⊕ (Hs

)
∗
)Gρ(D)π∗ρ .
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Here, the first summand can be bounded below by ∣(−Hs
)
∗
⊕Hs

∣
2
≥ g2 1 using the line-gap. Collecting these above lower bounds shows

Lκ,ρ(Hs
)
∗Lκ,ρ(Hs

) ≥ g21ρ + E,

with an error term given by

E = κπρ
⎛
⎜
⎝

0 [H, D0]
∗

[H, D0] 0

⎞
⎟
⎠
π∗ρ

+ πρ((−Hs
)
∗
⊕Hs

)Gρ(D)[Gρ(D), ((−Hs
)⊕ (Hs

)
∗
)]π∗ρ

+ πρ[((−Hs
)
∗
⊕Hs

), Gρ(D)]((−Hs
)⊕ (Hs

)
∗
)Gρ(D)π∗ρ .

Note that Gρ is an even function and ∣D∣2 = D2 so that one can replace Gρ(D) = Gρ(∣D∣), which is diagonal in the 2 × 2 grading. Hence,

[Gρ(D), ((−Hs
)⊕ (Hs

)
∗
)] = [Gρ(∣D0∣), (−Hs

)]⊕ [Gρ(∣D∗0 ∣), (H
s
)
∗
)]

= [H, Gρ(∣D0∣)]⊕ [H, Gρ(∣D∗0 ∣)]
∗.

(Note that for the particular choice of D made here, one actually has ∣D∗0 ∣ = ∣D0∣.) Therefore, using ∥Gρ(D)∥ ≤ 1 and then (10), one has

∥E∥ ≤ κ ∥[H, D0]∥ + 2 ∥Hs
∥ max{∥[H, Gρ(∣D0∣)]∥, ∥H, Gρ(∣D∗0 ∣)]∥}

≤ κ ∥[H, D0]∥ +
16
ρ
∥Hs
∥ max{∥[H, ∣D0∣]∥, ∥H, ∣D∗0 ∣]∥}.

Finally, let us use ∥Hs
∥ ≤ ∥H∥ + ∣s∣ ≤ ∥H∥ + 2 ∥Im(H)∥ ≤ 3 ∥H∥ (note that factor 3 can be omitted if H is self-adjoint, improving the bound

below). Then, using the quantity N introduced in statement of Theorem 1 and the bound 1
ρ ≤

κ
cρg following from (4), one deduces that

∥E∥ ≤ (κ + 3 ∥H∥
16
ρ
)N ≤ κ(1 +

∥H∥
g

48
cρ
)N ≤ κN

∥H∥
g
(1 +

48
cρ
) ≤ cκ(1 +

48
cρ
)g2 (11)

due to ∥H∥ ≥ g and (4). Now, cκ(1 + 48
cρ
) = 3

4 , so combining with the above, one deduces (9) for all ∣s∣ ≤ 2 ∥Im(H)∥.

V. CONSTANCY OF THE SIGNATURE
It is the object of this section to prove that the signature Sig(Lκ,ρ(H)) does not change with κ and ρ as long as the bounds (4) hold. For

the changes in κ, this follows directly from the results of Sec. IV; on the other hand, changing ρ means changing the size of the matrix, which
is not a continuous procedure. To address the issue, it will be shown as in Refs. 2 and 16 that the Hamiltonian can be tampered down away
from the origin without changing the signature. Once the corresponding path of tampered spectral localizers is constructed, it is then again
sufficient to show that the line-gap remains open along the path because, then, there is no spectral flow across the imaginary axis so that the
signature remains constant. This will be achieved by a suitable modification of the arguments of Sec. IV. In particular, the objects and stated
bounds of Sec. IV will be freely used. Let us begin by introducing the family of functions Gρ,λ(x) = (1 − λ) + λGρ(x) for all λ ∈ [0, 1], and
then, we set, for ρ′ ≥ ρ > 0,

Lκ,ρ,ρ′(H; λ) = κπρ′Dπ
∗

ρ′ + πρ′Gρ,λ(D)((−H)⊕ (H)∗)Gρ,λ(D)π
∗

ρ′ ,

which is an operator acting on (H⊕H)ρ′ . This formula clearly shows that the Hamiltonian is redressed by the factors Gρ,λ(D), which assure
that the new Hamiltonian decays away from the origin (except for λ = 0). One has Lκ,ρ,ρ′(H; 0) = Lκ,ρ′(H) and Lκ,ρ,ρ′(H, 1) = κπρ′ ,ρDπ

∗

ρ′ ,ρ
+ Lκ,ρ,ρ(H, 1), where πρ′ ,ρ is the partial isometry onto the subspace of Ran(χ(∣D∣ ≤ ρ′)) that is orthogonal to Ran(χ(∣D∣ ≤ ρ)). One finds by
essentially the same argument leading to (8) that

(Lκ,ρ,ρ′(H; λ) − ıs1ρ′)
∗
(Lκ,ρ,ρ′(H; λ) − ıs1ρ′)

≥ Lκ,ρ,ρ′(H; λ)∗Lκ,ρ,ρ′(H; λ) + (s2
− 2 ∥Im(H)∥ ⋅ ∣s∣)1ρ′.
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Again, this shows that it is sufficient to deal with ∣s∣ ≤ 2∥Im(H)∥. For such s, let us compute again in a similar manner as in Sec. IV, but with
a few more algebraic manipulations,

(Lκ,ρ,ρ′(H; λ) − ıs1ρ′)
∗
(Lκ,ρ,ρ′(H; λ) − ıs1ρ′)

= κ2πρ′D
2π∗ρ′ + s2πρ′(1 −Gρ,λ(D)

4
)π∗ρ′ (12)

+ πρ′Gρ,λ(D)((−Hs
)
∗
⊕Hs

)G2
ρ,λ(D)((−Hs

)⊕ (Hs
)
∗
)Gρ,λ(D)π

∗

ρ′ (13)

+ κ πρ′Gρ,λ(D)
⎛
⎜
⎝

0 [H, D0]
∗

[H, D0] 0

⎞
⎟
⎠

Gρ,λ(D)π
∗

ρ′ (14)

+ 2sπρ′Gρ,λ(D)Im[((−H)∗ ⊕H)(1 −Gρ,λ(D)
2
)]Gρ,λ(D)π

∗

ρ′. (15)

It is here important that in (13) appears Hs and not just H because in this manner, the line gap of H can be used efficiently. The first three
summands in (12) and (13) are non-negative, and on each, a quantitative (positive) lower bound will be proved below such that the sum of
the three is strictly positive; the last two summands (14) and (15) will then be shown to be a perturbation that does not spoil the positivity. Let
us start out with a lower bound on

(13) = πρ′Gρ,λ(D)
2
((Hs
)
∗Hs
⊕Hs

(Hs
)
∗
)Gρ,λ(D)

2π∗ρ′

− πρ′Gρ,λ(D)
2
((Hs
)
∗
⊕Hs

)[(Hs
⊕ (Hs

)
∗
), Gρ,λ(D)]Gρ,λ(D)π

∗

ρ′

− πρ′Gρ,λ(D)[Gρ,λ(D), ((H
s
)
∗
⊕Hs

)]Gρ,λ(D)(H
s
⊕ (Hs

)
∗
)Gρ,λ(D)π

∗

ρ′

≥ g2πρ′Gρ,λ(D)
4π∗ρ′

− πρ′Gρ,λ(D)
2
((Hs
)
∗
⊕Hs

)[(Hs
⊕ (Hs

)
∗
), Gρ,λ(D)]Gρ,λ(D)π

∗

ρ′

+ πρ′Gρ,λ(D)[(H
s
)
∗
⊕Hs

), Gρ,λ(D)]Gρ,λ(D)(H
s
⊕ (Hs

)
∗
)Gρ,λ(D)π

∗

ρ′

= g2πρ′Gρ,λ(D)
4π∗ρ′

− λ πρ′Gρ,λ(D)
2
((Hs
)
∗
⊕Hs

)[H ⊕H∗, Gρ(D)]Gρ,λ(D)π
∗

ρ′

+ λ πρ′Gρ,λ(D)[H ⊕H∗, Gρ(D)]Gρ,λ(D)(H
s
⊕ (Hs

)
∗
)Gρ,λ(D)π

∗

ρ′.

The first summand is positive and will nicely combine with those in (12); the others combine with (14) and (15) to an error term

Eρ,ρ′(s, λ) = κ πρ′Gρ,λ(D)
⎛
⎜
⎝

0 [H, D0]
∗

[H, D0] 0

⎞
⎟
⎠

Gρ,λ(D)π
∗

ρ′

+ λ πρ′Gρ,λ(D)[H
∗
⊕H, Gρ(D)]Gρ,λ(D)(H

s
⊕ (Hs

)
∗
)Gρ,λ(D)π

∗

ρ′

+ λ πρ′Gρ,λ(D)
2
((Hs
)
∗
⊕Hs

)[Gρ(D), H ⊕H∗]Gρ,λ(D)π
∗

ρ′

+ 2 s πρ′Gρ,λ(D)Im[((−H)∗ ⊕H)(1 −Gρ,λ(D)
2
)]Gρ,λ(D)π

∗

ρ′.

Then, neglecting also the s2-term in (12),

∣Lκ,ρ,ρ′(H; λ) − ı s 1ρ′ ∣
2
≥ κ2 D2

ρ′ + g2πρ′Gρ,λ(D)
4π∗ρ′ + Eρ,ρ′(s, λ).

Note that this is an inequality for matrices on the finite dimensional space Ran(πρ′). This latter space will be decomposed into Ran(π ρ
2
)

⊕ Ran(πρ′ , ρ2 ) where πρ′ , ρ2 = πρ′ ⊖ π
ρ
2
. Then, the strict positivity of the r.h.s. is proved by providing quantitative positive lower bounds on the

two diagonal terms and then showing that the positivity of the 2 × 2 block matrix is not spoiled by the two off-diagonal terms. Note that the
first summands are diagonal in this decomposition; hence, the only off-diagonal contribution stems from Eρ,ρ′(s, λ).

Let us start with the positive term on Ran(π ρ
2
). As π ρ

2
Gρ,λ(D)4π∗ρ

2
= π ρ

2
π∗ρ

2
= 1 ρ

2
, one gets

κ2 D2
ρ
2
+ g2π ρ

2
Gρ,λ(D)

4π∗ρ
2
≥ g2 1 ρ

2
.
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The error term Eρ,ρ′(s, λ) restricted to Ran(π ρ
2
) only contains the first three summands because (1 −Gρ,λ(D)2

)π∗ρ
2
= 0. Thus, with λ ≤ 1 and

∥Hs
∥ ≤ 3∥H∥ for ∣s∣ ≤ 2∥Im(H)∥ and (10), it follows as in (11) that

∥π ρ
2
Eρ,ρ′(s, λ)π

∗
ρ
2
∥ ≤ κ∥[H, D0]∥ + 2λ∥Hs

∥ ⋅ ∥[Gρ(D), (H ⊕H∗)]∥ ≤ cκ (1 +
48
cρ
) g2
=

3
4

g2.

Together, one concludes that π ρ
2
∣Lκ,ρ,ρ′(H, λ) − ıs1ρ′ ∣

2π∗ρ
2
> 1

4 g2 1 ρ
2
. Next, let us come to the other diagonal part. Using merely the first term,

one has for the positive contribution

πρ′ , ρ2 (κ
2D2

ρ′ + g2πρ′Gλ,ρ(D)
4π∗ρ′)π

∗

ρ′ , ρ2
≥

κ2ρ2

4
1ρ′ , ρ2 ≥

c2
ρ

4
(1 +

∥Im(H)∥
g

)

2

g2 1ρ′ , ρ2 .

Let us next bound the error Eρ,ρ′(s, λ) on Ran(πρ′ , ρ2 ). The last summand needs particular care based on the following identity:

Im[((−H)∗ ⊕H)(1 −Gρ,λ(D)
2
)] = (1 −Gρ,λ(D)

2
)Im((−H)∗ ⊕H) +

1
2ı
[Gρ,λ(D)

2, (−H)∗ ⊕H].

Using the fact that (1 − x2
)x ≤ 2

9

√
3 ≤ 1

2 for all x ∈ [0, 1],

∥πρ′ , ρ2 Eρ,ρ′(s, λ)π
∗

ρ′ , ρ2
∥ ≤ κ∥[H, D0]∥ + 2λ∥[(H∗ ⊕H), Gρ(D)]∥ ⋅ ∥Hs

∥

+ 2∣s∣(
1
2
∥Im(H)∥ + λ∥[Gρ(D), (−H)∗ ⊕H]∥)

≤
3
4

g2
+ 4 ∥Im(H)∥(

1
2
∥Im(H)∥ +

8
ρ

N)

≤
3
4

g2
+ 2 ∥Im(H)∥2

+
32 cκ ∥Im(H)∥ g2

cρ ∥H∥ (1 + g−1
∥Im(H)∥)

≤
3
4

g2
+ 2 ∥Im(H)∥2

+
32 cκ

cρ
g2,

where in the last two steps, respectively, the bounds in (4) and ∥Im(H)∥ ≤ ∥H∥ were used. Thus, one obtains

πρ′ , ρ2 ∣Lκ,ρ,ρ′(H, λ) − ı s 1ρ′ ∣
2π∗ρ′ , ρ2 ≥

⎛

⎝

c2
ρ

4
(1 +

∥Im(H)∥
g

)

2

−
3
4
− 2
∥Im(H)∥2

g2 −
32 cκ

cρ
⎞

⎠
g2 1ρ′ , ρ2 .

Finally, let us bound the off-diagonal term π ρ
2
Eρ,ρ′(s, λ)π

∗

ρ′ , ρ2
. Again, by π ρ

2
(1 −Gρ,λ(D)2

) = 0, the first summand in the above formula for

Im[((−H)∗ ⊕H)(1 −Gρ,λ(D)2
)] drops out. Hence, by the estimate above,

∥π ρ
2
Eρ,ρ′(s, λ)π

∗

ρ′ , ρ2
∥ ≤

3
4

g2
+

32 cκ
cρ

g2.

The matrix πρ′ , ρ2 Eρ,ρ′(s, λ)π
∗
ρ
2

satisfies the same norm bound. Therefore, in the grading of Ran(π ρ
2
)⊕ Ran(πρ′ , ρ2 ), one has

∣Lκ,ρ,ρ′(H, λ) − ı s 1ρ′ ∣
2
≥ g2
⎛
⎜
⎜
⎜
⎝

1
4

M

M∗
c2
ρ

4
(1 +

∥Im(H)∥
g

)
2
−

3
4
− 2
∥Im(H)∥2

g2 −
32 cκ

cρ

⎞
⎟
⎟
⎟
⎠

,

with off-diagonal error term M satisfying ∥M∥ ≤ 3
4 +

32 cκ
cρ

. This is strictly positive as long as
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1
4
(

c2
ρ

4
(1 +

∥Im(H)∥
g

)
2
−

3
4
− 2
∥Im(H)∥2

g2 −
32 cκ

cρ
) > (

3
4
+

32 cκ
cρ
)

2

,

which can readily be verified using cκ = 1
12 and cρ = 6. As the gap remains open for all λ ∈ [0, 1], one can conclude that

Sig(Lκ,ρ′(H)) = Sig(Lκ,ρ,ρ′(H, 0))

= Sig(Lκ,ρ,ρ′(H, 1))

= Sig(Lκ,ρ,ρ(H, 1)),

where the last equality follows from Lκ,ρ,ρ′(H, 1) = κπρ′ ,ρDπ
∗

ρ′ ,ρ ⊕ Lκ,ρ,ρ(H, 1) and the facts that the signature is additive on direct sums and
Sig(πρ′ ,ρDπ

∗

ρ′ ,ρ) = 0. Then, on the finite volume, one can reverse the homotopy in λ to show that Sig(Lκ,ρ,ρ(H, 1)) = Sig(Lκ,ρ,ρ(H, 0)) because
the gap is open also on this path by the above argument for ρ′ = ρ. This concludes the proof of the constancy of the signature.

VI. HOMOTOPY ARGUMENTS
This section proves equality (6), which, hence, concludes the Proof of Theorem 1. The strategy will be to homotopically deform the

Hamiltonian H and the Riesz projection P into self-adjoint objects for which (6) is already known by previous works.2,16 One then has to
show that along those homotopies, both sides of equality (6) remain constant. Let us start with the index. It is well-known15,16 that the Riesz
projection P can be deformed into its (self-adjoint) range projection Q by the linear path t ∈ [0, 1]↦ Pt = tQ + (1 − t)P of idempotents. Set
Rt = Pt(1 − (Pt − P∗t )2

)
1
2 . The Fredholm property of RtF0R∗t + 1 − RtR∗t follows by the argument of the Proof of Proposition 4 because the

commutator [Pt , F0] is compact (since [Q, F0] = [R, F0]R∗ + R[R∗, F0] is compact). Therefore, the index is constant along the path so that
Ind(PF0P∗∣Ran(P)) = Ind(RF0R∗ + 1 − RR∗) = Ind(QF0Q + 1 −Q). Furthermore, by a similar argument, one checks that [D, Q] extends to a
bounded operator. One can thus use the result of Ref. 2 (see also Ref. 3 or Theorem 10.3.1 in Ref. 16) applied to the flat-band self-adjoint
Hamiltonian 1 − 2Q to conclude that

Ind(QF0Q + 1 −Q) =
1
2

Sig(Lκ′ ,ρ′(1 − 2Q)),

where κ′ can be chosen sufficiently small and ρ′ sufficiently large such that bounds similar to (4) hold. Furthermore, as [D, Q] and [D, P]
both extend to bounded operators, so does [D, Pt] for all t ∈ [0, 1]. One thus disposes of bound (5) for all t ∈ [0, 1], provided that κ′ and ρ′
are chosen sufficiently small and large, respectively (note that g, N, and ∥P∥ all depend continuously on t, and the gap of the spectral localizer
remains open). This implies that Sig(Lκ′ ,ρ′(1 − 2Q)) = Sig(Lκ′ ,ρ′(1 − 2P)). Finally, one connects the non-self-adjoint flat band Hamiltonian
1 − 2P to H by the homotopy t ∈ [0, 1]↦ (1 − t)(1 − 2P) + tH, which lies in the set of line-gapped local Hamiltonians. Hence, again, the
line-gap of the spectral localizer remains open along this path, and therefore, Sig(Lκ′ ,ρ′((1 − t)(1 − 2P) + tH)) is constant in t. Combining all
the above facts, one concludes that

Ind(PF0P∗∣Ran(P)) =
1
2

Sig(Lκ′ ,ρ′(H))

for suitable κ′ and ρ′. However, by the results of Sec. V, the signature is constant for all κ > 0 and ρ > 0 satisfying (4).

VII. ODD-DIMENSIONAL CHIRAL SYSTEMS WITH A LINE-GAP
Let us briefly explain why the spectral localizer technique for odd-dimensional chiral systems1,3,16 directly transposes to the study

of non-Hermitian line-gapped chiral Hamiltonians (local as throughout the paper). Suppose that H and P are given in the spectral
representation of J,

J =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

, H =
⎛
⎜
⎝

0 B

A 0

⎞
⎟
⎠

, P =
1
2

⎛
⎜
⎝

1 V−1

V 1

⎞
⎟
⎠

. (16)

The entries A and B are invertible, and B = A∗ for H self-adjoint. The particular form of the entries of P follows from JPJ = 1 − P, and V−1
= V∗

is unitary if and only if P = P∗. For each of A, B, and V , one computes an odd index pairing, e.g., Ind(EAE + 1 − E), where E = χ(D > 0) is the
Hardy projection. If H and, hence, A are covariant (in the standard sense defined, e.g., in Ref. 17), then this index is equal to an odd Chern
number by an index theorem.17

Proposition 5. Let H be a line-gapped chiral Hamiltonian with a Riesz projection P on the spectrum with a negative real part. Then, there
exists a smooth path t ∈ [0, 1]↦ Ht of line-gapped and local chiral Hamiltonians such that H0 = H and H1 = 1 − 2P. In particular, the odd
index pairings satisfy
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Ind(EAE + 1 − E) = −Ind(EBE + 1 − E) = Ind(EVE + 1 − E).

Proof. Let γ be a positively oriented path winding once around each point of the spectrum with a negative real part so that
P = ∮γ

dz
2πı (z1 −H)−1. The path can be chosen (sufficiently large) such that −γ encircles the part of the spectrum with a positive real part

also with a winding number 1. Further introduce the interpolating functions f ±t (z) = (1 − t)z ± t, which are analytic in the interior of γ and
−γ. Hence, one can set

Ht = ∮
γ

dz
2πı

f −t (z) (z1 −H)−1
+ ∮

−γ

dz
2πı

f +t (z) (z1 −H)−1.

The first summand acts non-trivially merely on the range of P, while the second acts on the range of 1 − P. The spectral mapping theorem
implies that Ht has a line-gap for all t ∈ [0, 1]. Furthermore, one readily checks that JHtJ = −Ht . As clearly H0 = H and H1 = −P + (1 − P), the
path has all the properties claimed in the statement. This homotopy directly implies that the index pairings of A and V coincide, as do those
of B and V−1. As those of V and V−1 differ by a sign, the claim follows. ◻

The index of A and B can separately be accessed by the self-adjoint odd spectral localizers,1,16 but alternatively, one can also use the
non-self-adjoint one involving the Hamiltonian

Ind(EAE + 1 − E) =
1
2

Sig(Lod
κ,ρ(H)), Lod

κ (H) =
⎛
⎜
⎝

κD B

A −κD

⎞
⎟
⎠

,

provided that κ and ρ satisfy (4).
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APPENDIX: FORMULAS FOR THE SIGNATURE

The signature of an N ×N matrix L with no spectrum on the imaginary axis is equal to the difference of the total algebraic multiplicity
of all eigenvalues with positive and negative real parts. According to Theorem 1, the signature of the finite volume spectral localizer is the
topological invariant of interest. This Appendix discusses two ways to access Sig(L): one via a spectral flow and one via a winding number.
Let us begin by recalling (e.g., Sec. 1.6 of Ref. 16) that for a continuous path t ∈ [0, 1]↦ Lt of matrices such that the endpoints L0 and L1 have
no spectrum on the imaginary axis, the spectral flow of the path is given by

Sf(t ∈ [0, 1]↦ Lt) =
1
2
( Sig(L1) − Sig(L0)). (A1)
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Hence, the spectral flow counts the number of eigenvalues crossing the imaginary axis in the positive direction minus those crossing the
imaginary axis in the negative direction. Let us stress that this is, in general, not the spectral flow of the path t ∈ [0, 1]↦ Re(Lt) =

1
2(Lt + L∗t ).

Formula (A1) can be used to compute the signature Sig(L) if one chooses a suitable path with L1 = L and for which the signature Sig(L0)

is known. An example of such a path is certainly given by Lt = L + 2(1 − t)∥L∥, for which Sig(L0) = N. Section II rather exhibits a path for
which Sig(L0) = 0. Such paths are advantageous (in numerical applications) if the signature of L is small compared to the size N. The spectral
flow of the path can be obtained numerically by computing the low-lying spectrum of Lt for all t ∈ [0, 1] (of course, the path is discretized and
typical paths are actually analytic in t).

Another formula for the signature is known as the Routh–Hurewitz theorem. As given in the short proof below, it is a basic consequence
of the argument principle. It is a way to access the non-Hermitian signature as a suitable winding number. Again, this is potentially of use for
numerics in situations where the signature is small compared to the size of the matrix so that the winding number appearing below is also
small. While this formula is not implemented in the present work, it is certainly of theoretical interest in this context.

Proposition 6. Let L be an N ×N matrix with a line-gap on the imaginary axis. Then, its half-signature is given by

1
2

Sig(L) = ∫
∞

−∞

ds
2πı

∂s ln (det (L + ı s 1)) (A2)

= ∫

∞

−∞

ds
2π

1
1 + s2 Tr((1 + ı s L)(L + ı s 1)−1

). (A3)

Proof. The characteristic polynomial z ∈ C↦ det (L − z1) is analytic and of the form det (L − z1) = (−z)N
+O(∣z∣N−1

). Let us introduce
the meromorphic function

f (z) =
1

2πı
∂z det (L − z1)

det (L − z1)
.

Even though not used in the following, let us note that the fundamental theorem of algebra and the argument principle implies that

N = ∮
ΓR

dz f (z),

where ΓR is a positively oriented circle of sufficiently large radius R, centered at the origin. Let us split ΓR = Γ+R + Γ−R into the half-circle with
positive and negative real parts. Then, an explicit computation shows

N
2
= lim

R→∞∮Γ±R
dz f (z).

Furthermore, let Γ0
R be the path s ∈ [−R, R]↦ ıs ∈ C. By hypothesis, f has no pole on Γ0

R. If now N+ and N− denote the number of zeros of
det(L − z1) (counted with their multiplicity) on the right and left half-planes, respectively, then by the argument principle,

N− = ∮
Γ−R+Γ

0
R

dz f (z), N+ = ∮
Γ+R−Γ

0
R

dz f (z).

Taking the difference, then, shows

N+ −N− = ∮
Γ+R

dz f (z) − ∮
Γ−R

dz f (z) − 2∮
Γ0

R

dz f (z).

Taking the limit R→∞ now implies the first equality (A2) (note that the sign is obtained by the change of orientation in the statement).
Using the identity ln det = Tr ln and then deriving directly imply that

1
2

Sig(L) = lim
R→∞∫

R

−R

ds
2π

Tr((L + ı s 1)−1
).

Now, the integrand only decays as 1
s at s→ ±∞ and, hence, is not integrable. However, one can regularize with

∫

R

−R

ds
2π

ıs
1 + s2 = 0.

Due to
Tr((L + ı s 1)−1

+
ıs

1 + s2 1) =
1

1 + s2 Tr((1 + ı s L)(L + ı s 1)−1
),

this leads to second equality (A3) because the integral is now absolutely convergent. ◻
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