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I. MEASUREMENTS AND SIMULATIONS ALONG Γ − Y

In addition to the spectra taken along the Γ−X direction, we also performed measurements and simulations along
Γ−Y, which are shown in Fig. S1. We see here that the two bands, which form the quadratic WP for equal rod
widths in all layers, move apart upon increasing w0 and are no longer degenerate. This is as expected since the linear
WPs are point degeneracies that only occur along the Γ−X direction.

FIG. S1. Spectra along Γ − Y: (a)-(e) Measured angle-resolved FTIR spectra of the chiral woodpile PhC with varying values
of the width w0. (f)-(j) The corresponding RCWA simulated spectra of the chiral woodpile PhC. The dashed black lines are
bulk bands calculated from MPB. We see that the two bands that form the quadratic WP for w = w0 move apart on increasing
rod width w0.

II. SAMPLE PARAMETERS

The structural parameters of the woodpile photonic crystal (PhC) samples, as determined by SEM, are given in
table I .

Fig. w (µm) w0 (µm) a (µm)

3 (a) 0.15 ± 0.01 0.14 ± 0.01 2.0 ± 0.1
3 (b), 4 0.20 ± 0.02 0.22 ± 0.01 2.1 ± 0.1
3 (c), 4 0.19 ± 0.01 0.26 ± 0.02 2.1 ± 0.1
3 (d), 4 0.20 ± 0.01 0.35 ± 0.01 2.1 ± 0.2
3 (e), 4 0.23 ± 0.02 0.43 ± 0.05 2.0 ± 0.1

4 0.18 ± 0.02 0.24 ± 0.02 2.1 ± 0.1
4 0.19 ± 0.03 0.24 ± 0.01 2.1 ± 0.1
4 0.19 ± 0.02 0.25 ± 0.02 2.0 ± 0.1
4 0.21 ± 0.01 0.45 ± 0.01 2.1 ± 0.1

TABLE I. Structural parameters of the samples used in Fig. 3 and Fig. 4 in the main text as determined by SEM.

Horizontal error bars in Fig. 4 of the main text are a result of propagation of the individual errors of w and w0 as
given in Table I. Vertical error bars in Fig. 4 are assumed to be 2 pixels wide, which corresponds to 0.72°, since we
read off the position of the split WPs from the angle-resolved spectra. Therefore, θ is the difference between the two
angles of incidence, as plotted on the horizontal axis in Fig. 3, at which the split WPs are located.



III. ACCIDENTAL QUADRATIC WEYL POINTS

As stated in the main text, the momentum space separation of the WPs is not generally a monotonic function of
the symmetry-breaking parameter, 1−w/w0. We present an example of an accidental quadratic WP which is formed
due to the re-merging of the split linear WPs on increasing the symmetry-breaking parameter. The band structure
for a chiral woodpile made out of Si rods (ε = 12) is shown in Fig. S2. For w0 = w we have the quadratic WP,
protected by screw symmetry (Fig. S2 (a)). As with the low-contrast PhC in the experiment, upon increasing w0, this
quadratic WP splits into two linear WPs, whose separation first increases along the Γ−X direction (Fig. S2 (b)).
However, increasing w0 further causes their separation to decrease to zero (Fig. S2 (c)), leading to the formation of
an accidental quadratic WP. Increasing w0 beyond this re-merging point leads to a splitting of this quadratic WP
along a different symmetry-allowed direction, Γ−Y in this case (Fig. S2 (d)).

FIG. S2. (a) Symmetry-protected quadratic WP for w0 = w. (b) This quadratic WP first splits into two linear WPs along
Γ − X upon increasing w0. (c) Further increasing w0 re-merges the two linear WPs, leading to the formation of an accidental
quadratic WP. (d) Increasing w0 beyond the re-merging point leads to a splitting of this quadratic WP along Γ − Y.

IV. COUPLING ANALYSIS

In the experiment presented in the main text, the WPs are embedded inside a continuum of states of other projected
bands of the PhC. Despite this, we are able to observe the WPs and kz = 0 Weyl bands as the boundaries of spectral
features where the transmission drops sharply to zero. Here, we explain this observation by performing a coupling
analysis similar to [1–5]. Two coefficients, Cs and Cp, and mode coupling index, κ, are defined using the overlap
integrals between s-polarized (p-polarized) plane waves |s(p)〉 and the Bloch modes of the PhC |ψn,k(x, y, z)〉 with
momentum k and band index n:

ηs(p) = | 〈s(p)|ψn,k(x, y, z)〉 |2, κ = ηs + ηp, Cs(p) = ηs(p)/κ. (S1)

The coefficient Cs(p) (0 ≤ Cs(p) ≤ 1) measures the degree of coupling between the polarized plane waves and the
Bloch modes of the PhC while κ (0 ≤ κ ≤ 1) measures the strength of coupling to a plane wave of any arbitrary
polarization. Vanishingly small transmission in the spectrum in the absence of bandgaps can be thought of as either
a polarization mismatch between the incident wave and the modes of the PhC, indicated by small Cs(p), and/or
inefficient mode in-coupling, indicated by small κ.

In Fig. S3, we analyze the cut of the transmission spectra for each polarization at Γ for a PhC with parameters
corresponding to Fig. 3 (h) of the main text. The band structure along the projected momentum kz, for k‖ = Γ, are
shown in Fig. S3 (a) and (c). Here, the states are characterized by the values of Cs(p) and κ. The RCWA simulations
of the s- and p- polarized spectra are shown in Fig. S3 (b). We can see that the sharp drop in transmission at Γ
around 2.4 µm for both polarizations is a result of a polarization mismatch and/or poor mode in-coupling of the Bloch
modes (highlighted in blue in Fig. S3 (a) and (c)). The boundaries of these spectral features in each polarization



match the two kz = 0 Weyl bands, allowing for a direct observation of WPs in the spectrum of 45◦-polarized light. In
the experiment we measure the spectrum of unpolarized light which is similar to that of 45◦-polarized light as can be
seen from the experimentally obtained polarized spectrum plotted in Fig. S3 (d)-(g). Simulations away from k‖ = Γ
show that this analysis continues to hold, allowing for this relatively unobscured observation of the splitting of WPs.

FIG. S3. (a), (c) The band structure showing bands 3 to 18 for k = (0, 0, kz). The color of the circular dots indicates the
value of Cs(p) and their size is proportional to the value of κ for the corresponding Bloch modes. The blue highlighted region
shows a band of wavelengths with polarization mismatch and/or poor mode in-coupling, leading to the observed sharp drop in
transmission at k‖ = Γ. The large-wavelength boundaries of these features correspond to bands 5 and 4 at kz = 0 for s and p
polarizations, respectively. (b) The RCWA simulated s- and p-polarized transmission spectra with parameters corresponding
to Fig. 3 (h) of the main text. (d)-(g) Experimentally measured transmission spectra for s-polarized, p-polarized, 45◦-polarized
and unpolarized light, respectively.

V. WEYL POINT AT R

The partner WP to the one at Γ is also a symmetry protected WP but of charge −2 and is located at the corners
of the 3D Brillouin zone (R point). The dispersion around this WP and a plot of the Berry phase calculated on a
sphere enclosing it is shown in Fig. S4. For low dielectric contrast such as in our experiment, this WP lies close to but
slightly above the light line. However, the large angle of incidence required (∼ 80◦) and low transmission of the PhC
near the edge of the light line makes it impractical for measurement. To remedy this, period-doubling via gratings or
perturbations to the structure could be employed to move this WP to smaller angles of incidence.



FIG. S4. Band structure of the chiral woodpile PhC in the vicinity of the R point, made out of dielectric rods (ε = 2.31),
with equal widths for all rods. The quadratic WP is marked with a red circle. The inset shows a plot of the winding of the
Berry phase for band 4 in a sphere around R. The double winding indicates that the degeneracy has a charge of −2.
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