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Generating and processing optical waveforms using spectral singularities
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We show that a laser at threshold can be utilized to generate the class of coherent and transform-limited
waveforms (vt − z)mei(kz−ωt ) at optical frequencies. We derive these properties analytically and demonstrate them
in semiclassical time-domain laser simulations. We then utilize these waveforms to expand other waveforms
with high modulation frequencies and demonstrate theoretically the feasibility of complex-frequency coherent
absorption at optical frequencies, with efficient energy transduction and cavity loading. This approach has
potential applications in quantum computing, photonic circuits, and biomedicine.
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I. INTRODUCTION

There has been a recent explosion of interest in wave
systems described by non-Hermitian operators, leading to
complex eigenvalues in the general case. Such systems can
exhibit singular behaviors not present in systems well de-
scribed by a Hermitian operator. In the current work, we
study the singularity associated with the onset of lasing
as an optical waveform generator, and utilize it to gener-
ate waveforms associated with enhanced wave capture and
absorption, phenomena which so far have been inaccessi-
ble at optical frequencies. We focus on singularities in the
frequency-domain Maxwell equations relating to the time-
harmonic solutions of open electromagnetic systems, under
asymptotic boundary conditions leading to solutions at dis-
crete complex frequencies, in contrast to the conventional case
of scattering boundary conditions (which lead to a continuous
spectrum of real frequency solutions).

The well-known example of this is the complex resonance
spectrum of a scattering structure, where the boundary con-
ditions at infinity are purely outgoing, without any input
wave [1]. Another example is the complex spectrum arising
from the boundary conditions of purely incoming waves at in-
finity; such boundary conditions can lead to the phenomenon
of coherent perfect absorption, as we will define and discuss
further below [2,3]. More recently, complex spectra associ-
ated with reflectionless scattering [4,5] have been shown to
have similar properties, but distinct from the two examples
just cited. All such spectra are defined by the boundary con-
ditions on the wave operator at infinity, as just noted, or,
equivalently, by the behavior of the linear scattering matrix
(S matrix) at the eigenfrequencies. At an eigenfrequency cor-
responding to a resonance, an S-matrix eigenvalue tends to
infinity (a pole), whereas an eigenvalue of S tends to zero
for the purely incoming case, and an eigenvalue for a subma-
trix of S tends to zero for reflectionless scattering. Note that
only when one of these eigenfrequencies is real is the corre-
sponding state a steady-state solution of the linear Maxwell
equation.

Singular behavior can arise in the case where two or more
such eigenfrequencies become degenerate, which, in the ab-
sence of continuous symmetry, almost always involves tuning
one or more parameters associated with the scattering struc-
ture (henceforth referred to as a resonator for convenience).
Generically, such a degeneracy results in the coalescence of
the two eigenmodes as well, unlike the Hermitian case. The
point in parameter space where this happens is referred to as
an exceptional point (EP); there is now an extensive theoret-
ical and experimental literature on the physics of systems at
an EP [6–10]. The case of resonant EPs is the most widely
studied [6,11,12], but in the discussion of wave capture below,
we will focus on a different kind of EP.

The resonance spectrum has special properties not shared
by the complex spectra associated with wave capture just men-
tioned. Resonances of passive systems cannot occur on the
real frequency axis; in active systems (lasers and amplifiers),
resonances can reach the real axis (typically only singly). This
corresponds to the threshold for single-mode continuous-wave
(cw) laser emission from the resonator, and the corresponding
eigenfunction is the threshold lasing mode. By definition, this
also corresponds to having a pole of the S matrix on the real
axis. Due to this pole, the response to a small input will grow
indefinitely in time, and we will exploit this property of the
lasing singularity for waveform generation below [13–17].

A. Real and Virtual CPA

The laser at threshold is related by time reversal to a coher-
ent perfect absorber (CPA) [2]. Quite generally, the Maxwell
wave equation with outgoing boundary conditions for a finite
resonator described by a susceptibility χ (r) maps under time
reversal to the same wave equation applied to a resonator with
susceptibility χ∗(r), and incoming boundary conditions. If the
susceptibility is real, this implies that the eigenfrequencies
corresponding to the zeros of the S matrix are the complex
conjugates of the resonance frequencies and must occur in the
upper-half complex plane, and not on the real axis. However,
if the resonator has gain and is at the lasing threshold, then this
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time-reversal mapping implies that the system with equivalent
loss perfectly absorbs the time reverse of the lasing mode, at
the same frequency. Such a resonator, tuned to have the correct
amplitude and spatial distribution of absorption, is called a
coherent perfect absorber because it traps and then perfectly
absorbs a specific coherent spatial waveform or wave front
(and only that input) [2,3].

CPA is the generalization to arbitrary multichannel scat-
tering of the concept of critical coupling to a lossy resonator
with a single input channel. However, it has recently been
emphasized that zeros of the S matrix off the real axis, which
cannot be accessed with steady-state harmonic excitation, can
be accessed transiently with a complex exponential input.
A exp[−i(ωz + iγz )t], where ωz + iγz is the eigenfrequency of
the zero of the S matrix [18]. Note that this waveform has
an exponentially growing amplitude at rate γz and can only
be applied transiently. Accessing this “virtual” CPA does not
correspond to actual absorption if the system is lossless, but
rather to energy buildup and storage in the resonator until the
exponential ramp is turned off. It should be noted that such
a concept of reversing decay from a resonator or even spon-
taneous emission from a single atom has also been suggested
without connection to the CPA concept [19]. Finally, there is a
third important case [20] that was noted, but not studied in de-
tail in earlier work. If the resonator is not lossless, but does not
have enough absorption to bring the zeros to the real axis, then
each zero will have an imaginary frequency γz ≈ (γ0 − γa),
where γa is the absorption rate and γ0 is the imaginary part of
the frequency of the lossless resonator. When such a resonator
is excited with the appropriate complex frequency, no scatter-
ing will occur while the drive is on, but during this period,
the resonator will both accumulate energy and dissipate part
of that energy via absorption so that when the drive is turned
off, some but not all of the incident energy will be released.
We will study such a case below.

B. Absorbing exceptional points: Frequency and time domain

The existence of such wave-capture processes suggested
that there would be interesting new behaviors when a res-
onator’s parameters were tuned to a CPA EP, where two
such eigenfrequencies become degenerate. For the case of
real−ω CPA, this was first explored in the frequency do-
main by Sweeney et al. [21], where an anomalous line shape
for the absorption dip to zero reflection was predicted and
later observed [22]. More recently, two of the authors and
co-workers have extended the concept of virtual CPA to vir-
tual CPA EP [23], and studied the excitation of CPA EPs
in the time domain. It was shown that the signature of the
EP was the perfect absorption and capture of waveforms
with the time dependence E (t ) = Bt exp[−i(ωz − iγz )t] and
A exp[−i(ωz + iγz )t] in any coherent superposition. This
statement also holds for the case γz = 0 and corresponds to
the real CPA EP mentioned above; here, the resonator ab-
sorbs a linearly growing plus constant wave envelope (i.e.,
without exponential growth) [23]. For a one-dimensional ge-
ometry, since the solution must satisfy the wave equation,
the spacetime waveform which is perfectly absorbed at a real
or virtual CPA EP is E ∝ A exp[−i(ωz + iγz )/v(z − vt )] +
B(vt − z) exp[−i(ωz + iγz )/v(z − vt )]. This generalizes to

higher-order EPs (degeneracy m > 2), where the relevant
waveform is

∑m
n=1 an(vt − z)m exp[−i(ωz + iγz )/v(z − vt )].

Interestingly, all the coherent waveforms within this class
have a frequency content at a single ω for infinite time
pulses, i.e., at z = 0 the Fourier Transform reads F (tmeiω1t ) =
δ(m)(ω − ω1) [23], which implies that for finite pulses, they
are transform limited. While there will always be some im-
perfection in the wave capture due to the transient effects of
the turn-on and turn-off of the waveform, it was demonstrated
in that work that the high-order waveforms have substantially
improved performance in wave capturing [23]. Experimental
realizations in microwave circuits confirm the basic con-
cept [24]. Up to this point, all the excitation properties that we
have discussed are independent of geometry or dimensional-
ity. We have assumed that the appropriate input eigenvector of
the S matrix is imposed, which, in general, means exciting all
the scattering channels with a specific coherent superposition
or wave front. For simplicity, here we will focus on the time-
domain behavior in the simplest case of a one-dimensional
single-sided slab resonator with a perfect mirror at the ori-
gin, so that the S matrix reduces to a single scalar reflection
amplitude coefficient, r(ω). However, the results we present
will generalize to arbitrary geometry in a similar manner, by
replacing r(ω) with the relevant eigenvalue of the S matrix,
σ (ω), and the plane-wave input, eikz, with the relevant eigen-
function of the S matrix.

While it is possible (although not trivial) to gener-
ate transient exponentially rising waveforms at microwave
modulation frequencies [25], this is not by any means straight-
forward to achieve at higher modulation frequencies, up to
optical, making accessing virtual CPA quite difficult. This
suggests that using an all-optical means of waveform gen-
eration might be necessary and useful. One type of optical
processing was identified using a CPA in Ref. [23]. It was
shown that a CPA converts the waveform (vt − z)ei(kz−ωt )

to a standard plane wave; in fact, more generally, a CPA
can be used as a first-order envelope differentiator [26]. The
conversion process just mentioned is the time reverse of the
process that we will study below. Here we show that a stan-
dard continuous-wave (cw) laser at threshold can act as a
processor and potentially as a generator for different time-
varying waveforms (envelopes) at optical frequencies relevant
to creating novel wave capture, enhanced absorption, and
reduced reflection. In Sec. II, we present our results relating
to waveform generation by a laser at threshold. In the first
subsection, we analyze the linear response of the system in
the time domain. In the second, we include the critical effects
of saturation for long times. In Sec. III, we apply the new
waveforms to wave capture (lossless case), and wave capture
and enhanced absorption in the partially lossy case. In Sec. IV,
we summarize our results.

II. WAVEFORM GENERATION BY A LASER AT
THRESHOLD

The previous works reviewed above suggest that it would
be interesting and potentially useful to generate the grow-
ing waveforms that can be efficiently absorbed at a real
CPA EP, or to generate approximations to the exponen-
tially rising waveforms captured at a virtual CPA (or virtual
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FIG. 1. A scheme of the setup: A plane wave impinging on a
laser at threshold that generates the waveform (vt − z)ei(kz−ωt ), which
in turn is converted to the waveform (vt − z)2ei(kz−ωt ).

CPA EP). Such waveforms are not generated in an emission
process. However, the “native” conversion process of a laser
at threshold is to take a constant amplitude input wave and
output the linearly rising harmonic wave envelope of inter-
est (see Fig. 1). Specifically, from time reversal of the CPA
response [23], it can be concluded that a laser at threshold
within the linear response regime will convert ei(kz−ωt ) →
(vt − z)ei(kz−ωt ). In principle, this process can be repeated
to generate higher-order polynomial envelopes. The setup
is schematically illustrated in Fig. 1, where we assume a
single-sided slab cavity as described above. These wave-
form conversion processes are intrinsically optical with no
electronic manipulation necessary, and thus can be very
fast. The conversion sets in after only very few roundtrips
within the cavity [27]. If one uses a microlaser for the
conversion processes, the equilibration time is of the order of
10 fs and one can obtain many optical cycles of the desired
waveform as we will show.

We note that an important earlier work has demonstrated
that a laser near threshold can function as an envelope inte-
grator [27]. This work was focused on demonstrating accurate
all-optical integration of input pulses of different temporal
shape. The demonstration was done with a fiber laser using
electro-optically modulated pulses down to 60 ps in duration
and the laser was operated below threshold to avoid saturation
effects. They did not report a saturation time in their experi-
ments and did not consider it in their mathematical model.

Here we theoretically treat a laser exactly at threshold
(with the ideal linear transfer function prior to saturation) to
generate waveforms with optical modulation frequencies. We
calculate the saturation time to determine the upper time limit
on linear functioning. We consider an approximately square
(constant amplitude) input pulse, which can be processed to
generate the desired waveform. We will discuss ways to gen-

erate such pulses after presenting the results assuming such
pulses are available.

A. Laser at threshold: Linear response

For the 1D slab resonator of Fig. 1, the S matrix in the
frequency domain is simplified to the reflection coefficient
r(ω), which has the analytic form

r(ω) = − r1 + e2ikn1l1

1 + r1e2ikn1l1
≈ − r1 + e2iω/cn1l1

2in1l1(ω − ω1)/c
. (1)

Here, r1 is the reflection amplitude of the front mirror,
k = ω/c, l1 is the cavity length, and n1 is a uniform index
of refraction with uniformly distributed gain, to be described
in more detail below. In the second approximate equality we
have expanded r(ω) near a specific resonance frequency, ω1

(assumed to be at threshold). To calculate the response to
transient inputs, we need to include the turn-on (and turn-off)
of the input. In order to gain some intuition, we first express
in the frequency domain the incoming field at z = 0 Einc =
θ (t )eiω1t , where θ (t ) is a step function, and the laser response
r(ω) and the output in the vicinity of a resonance,

F (Ein ) = 1

ω − ω1
, r ≈ const

ω − ω1
, F (Escat ) ≈ const

(ω − ω1)2 ,

where F is the Fourier transform. Hence, taking into account
causality, we expect to have, in the time domain,

Escat (t ) = F−1[Escat (ω)] ≈ teiω1tθ (t ).

In order to satisfy the wave equation, the electric field has
to be of the form f (vt − z) and we obtain Escat (t, z) ≈
(vt − z)ei(kz−ωt )θ (t ); see Fig. 1.

Note that r(ω) has additional poles that will be off the
real axis and some distance away from the lasing frequency.
Hence, one has to take into account these poles in the cal-
culation. To that end, we explicitly write the inverse Fourier
transform (IFT) of the output. We analyze the IFT integral
close to the divergence at ω1 and in the other regions sepa-
rately, similarly to the calculation of the conversion process at
a CPA [23],

Escat (t ) =
∫ ω1−�ω

−∞

r(ω)

(ω − ω1)
eiωt dω

+
∫ ω1+�ω

ω1−�ω

a(ω)

(ω − ω1)2 eiωt dω

+
∫ ∞

ω1+�ω

r(ω)

(ω − ω1)
eiωt dω, (2)

where a(ω) is the numerator of r(ω) and has only exponen-
tials that will generate time shifts in the time domain. The
contribution of the integral with the pole is expected to be
dominant at large t and it can be shown that at the large t or
large �ω limit, it agrees with the expression obtained by the
simpler approximation for Escat above; see Appendix A for
details. From similar arguments, one can show that when the
waveform (vt − z)ei(kz−ωt ) impinges on a laser at threshold, it
will be converted to 1

2 (vt − z)2ei(kz−ωt ). Thus, by inputting the
output back to the laser or to another identical laser, it is pos-
sible to generate any waveform of the class (vt − z)mei(kz−ωt ).

For a schematic of the setup, see Appendix B.
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From this inverse Fourier transform, we can obtain a good
approximation to the scattered field in response to an input

square pulse starting at t = 0 and ending at time t1, assuming
that saturation has not set in. The result is

Esc(t )

Einc
= ie−iω1t [tsgn(t ) + (t1 − t )sgn(t − t1)] ∗ [

1 + r1δ
(
t − 2l1n1

c

)]
τmin

≈ − ie−iω1 t̃ [t̃sgn(t̃ ) + (t1 − t̃ )sgn(t̃ − t1)](1 + r1)

τmin
, t̃ = t − τmin, (3)

where ∗ denotes convolution, and τmin = 2l1n1
c is the roundtrip

time of light travel in the cavity. For �ωpoles � �ωinput, only
the numerator determines the equilibration time to the linear
envelope behavior, which is of the order of τmin. From this
expression, the envelope in the linear regime has the form

|Esc(t )| ≈ |Einc|(1 + r1)

τmin
t . (4)

In principle, n1 in the definition of τmin involves the gain
medium and is complex, but the gain term is a small correction
and is negligible in the unsaturated linear regime.

B. Laser at threshold: Saturated response

In order to calculate the full nonlinear response of the
laser, we will need to solve the semiclassical laser equa-
tions with nonlinear coupling between the gain medium and
the wave equation to demonstrate the conversion ei(kz−ωt ) →
(vt − z)ei(kz−ωt ) over a finite time until saturation sets in. To
do this, we performed finite-difference time-domain (FDTD)
semiclassical simulations in MEEP utilizing a recently de-
veloped laser module [28–31] with an effective two-level
description, which approximately maps to a three-level sys-
tem when there is a fast 3 → 2 transition. We choose the
units so that the length of our cavity is l1 = 4 μm, which is
realizable experimentally [32]. This has the effect of making
the roundtrip time of 4 × 10−14 s; the corresponding lasing
frequency is in the red optical spectrum. We assume a smooth
but few-cycle turn-on of the drive and run the simulation until
saturation, whereas in the applications we envision the drive
pulse would be turned off prior to saturation. In our FDTD
simulations, the cavity has uniformly distributed gain and
is uniformly pumped. Details and further parameters for the
laser simulations are given in Appendix C.

It is worth noting that in the simulations, we neglect the
effect of spontaneous emission, which results in noise in the
output. To include such an effect in a simulation that is valid
for both the linear and nonlinear response regimes is beyond
the scope of the current work. In the linear response regime
(constant gain, unsaturated inversion), one can approximate
the spontaneous emission using Fermi’s golden rule and the
resulting expressions 
 = πωp2

h̄ε0
ρμ, ρ = − 2ω

π
Im[Gμμ(r, r)],

where ρμ is the density of electromagnetic states, p is the
dipole moment, and Gμμ(r, r) is Green’s tensor [33]. To cal-
culate the Green’s tensor, a full electrodynamic approach in
three dimensions needs to be utilized since l1 � λ and the
atoms should be modeled as a point source. We outline such
an approach in Appendix D. The experiments using a fiber
laser at threshold to integrate pulse envelopes found that the

laser noise did not significantly degrade the output [27]. In
addition, in practice, the waveforms will be trimmed before
saturation sets in; we neglect this effect since we focus on
the linear response regime and the switching off shape will
depend on the trimming mechanism.

Consistent with our analytic analysis, as shown in Fig. 2(a),
the outgoing field (blue, incoming in red) is indeed rising
with a linear envelope. In Appendix E, we plot the laser
response for smaller and larger incoming field amplitudes,
which shows that the conversion process is robust to changes
in the amplitude of the incoming field, and at low incom-
ing field amplitudes the envelope is wavy after the linear
response time window. We also derive, in Appendix F, the
rate-equation analysis with a constant drive, which explains
these dynamics. In Fig. 2(b), we show the behavior on the
longer timescale, where saturation sets in. First the field over-
shoots and then, without significant relaxation oscillations,
relaxes to a lower steady-state output of constant amplitude,
Escat ∝ Esateiωt . In Fig. 2(c), we present the scattered field as
a function of z, both within the laser cavity and in free space.
The field in free space has the form Escat ∝ (vt − z)ei(kz−ωt )

and matches well the predicted spatial field distribution in
Fig. 1.

The saturation field amplitude Esat cannot be calculated an-
alytically, but since it does correspond to a steady state it can
be calculated independently using the steady-state ab initio
laser theory (SALT) [17,34], and specifically by the method
of [35], referred to as I-SALT, which solves the saturated wave
equation with an injected signal. In this approach, one reduces
the coupled Maxwell-Bloch laser equations to a nonlinear
frequency domain Maxwell wave equation with saturation
by assuming a single-frequency constant amplitude harmonic
response as we have here for long times. The equation is
solved self-consistently including spatial hole-burning effects
as well as saturation, using a convenient basis set, providing
an exact (up to numerical error) solution for Esat. In Fig. 2(d),
we show that the saturation fields calculated by the two
independent methods (FDTD and I-SALT) agree extremely
well.

From knowledge of the saturation field, we can place a
lower bound on the time for which the linear response ex-
pressions will be valid. We see from the simulations that the
field is always linear, at least until the level of Esat; typically
it overshoots, becomes nonlinear, and then relaxes. Hence the
first time when |Esc(t )| = Esat provides a lower bound on the
saturation time, tsat. From Eq. (4), we see that

tsat >
|Esat|τmin

Einc(1 + r1)
. (5)
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FIG. 2. Semiclassical FDTD MEEP simulation results of the incoming and scattered electric fields with J = 0.01, Einc = 0.005 as functions
of time for (a) the linear-response simulation time, (b) the entire simulation time, and (c) space, which confirm the output waveform (vt −
z)ei(kz−ωt ) in Fig. 1. Note that in (c), the laser cavity is situated to the left of the vertical line and the gain medium is uniformly distributed along
the cavity. (d) The saturated field and tlin/trt as functions of Einc. Response of the laser to Einc ∝ (vt − z)ei(kz−ωt ) resulting in a scattered field of
the form (vt − z)2ei(kz−ωt ) in (e) the linear regime and (f) the enite simulation time.

This confirms that the system is linear for a time which scales
as the ratio of the saturation field to the incident field, and
can be quite long compared to the roundtrip time. We plot this
lower bound to the saturation time in Fig. 2(d). Note that the
roundtrip time is roughly 10 times the optical period, so for
the lowest input power we have used, the system is linear for
more than ∼103 oscillations. In applications, by changing the
cavity length or lowering the drive power, one can tune the
linear regime to exceed the pulse length of interest.

In Fig. 2(e), we present the response of the laser to an in-
coming field of the form Einc ∝ (vt − z)ei(kz−ωt ). As expected,
in the linear response time window, there is a conversion of
the input to (vt − z)2ei(kz−ωt ), in agreement with our previous
analysis. In Fig. 2(f), we present the laser response to this
input for later times. As before, the linear response over-
shoots and relaxes, but, distinct from the previous case, here
it does not relax to a constant amplitude after saturation sets
in because the drive amplitude itself is increasing linearly. In
practice, the length of this drive would be limited by the length
of the input drive pulse, which we have simply neglected here.
Again, we do not envision using the laser converter in the
saturated regime for the applications that we discuss here.

In order to switch these optical signals on and off, one
can use optical shutters, which are usually based on two-
photon absorption [36]. Optical shutters were shown to exhibit
10 fs switch-off time [37] and operate at low field inten-
sities [38]. Thus, one could use a pulsed laser to switch

on and off the optical signals that are emitted from the cw
laser.

III. WAVE CAPTURE: ENHANCED INTERNAL FIELD AND
ABSORPTION

The applications that we have in mind (at least initially)
are the capture, storage, and absorption of optical energy, uti-
lizing the incoming spectral singularities at complex and real
frequencies. The most natural example is to use our laser con-
verter to take a roughly square pulse and generate a linearly
rising pulse (vt − z)ei(ωt−kz) with an oscillation frequency ω

equal to that of a cavity tuned to have CPA EP. Inputting
this waveform instead of ei(ωt−kz) significantly reduces the
energy lost to transient scattering when a cavity is tuned to
a CPA EP; see Ref. [23] Fig. 3(b). While both waveforms are
perfectly absorbed by such a cavity in the steady state, for a
finite pulse the interaction of light with the cavity turns on
more adiabatically when the linear ramp is applied because
the incident field is small while the system equilibrates to
a quasi-steady state and large when the system is perfectly
absorbing.

Here we focus on accessing just a single complex zero
with a rising exponential by expanding it with the generated
waveforms. This approach can also be applied to the second-
order mode excitation of a virtual CPA EP. We will assume
that the absorbing cavity response always remains linear here,
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FIG. 3. Scattered fields for cavities with complex absorption eigenfrequency ωz + iγz; (a) we contrast cases of constant amplitude illumi-
nation with that of an optimized rising waveform. (b),(e) Illumination of a lossless cavity with l1n1 = 4, n1 = 1.22, and ωz = 3.53 + 0.287i.
The rising waveform (e) is much more efficient in capturing and storing energy than the constant amplitude input (b). (c),(f) Scattering from
a partially lossy, undercoupled cavity (zero above the real axis) with l1Re(n1) = 4, n1 = 1.22 + 0.072i, and ωz = 3.57 + 0.071i. Again, the
optimized rising waveform (f) is much more efficiently captured during the drive than is the constant amplitude wave (c). (d) Comparison of
the fractional scattered energy

∫ t
0 E 2

scdt ′/
∫ t

0 E 2
indt ′ vs t for both resonators and both inputs with 178.7 and 16.3 times less fractional scattered

energy before the switch off for the expanded wave for the lossless and lossy resonators, respectively.

for simplicity. If we excite the undercoupled cavity with the
correct complex frequency rising waveform corresponding to
a zero, this input will be perfectly captured in the steady state.
The field intensity will continue to grow exponentially with a
rate given by the imaginary part of the frequency. In this case,
the absorption per unit time will be enhanced because of the
constantly growing intensity in the cavity. This effect can be
used to enhance flux into an absorbing detector during a finite
time interval. Please note that due to the exponential growth
of the input, much of the total signal is contained in the last
few roundtrip times of the pulse, which will not be trapped
once the drive is turned off. Hence we will find that the total
fractional absorption is not necessarily much higher, but the
absorption during the equilibrated portion of the pulse should
be greatly enhanced. Also, the field within the cavity should be
strongly enhanced (this effect is largest for a lossless cavity),
which can be useful for applications involving high-field or
nonlinear effects. This reasoning shows the potential utility
for absorption and wave capture of being able to efficiently
generate rising exponential waveforms, something which is
quite difficult to do at optical frequencies.

We explore this approach in the calculations shown in
Fig. 3, where we assume we can generate polynomials up to
m = 4 and utilize them for capture and absorption in a loss-
less and partially lossy, undercoupled cavity. A comparison
of Figs. 3(b) to 3(e) (lossless cavity) and Figs. 3(c) to 3(f)
(partially lossy cavity) shows that the expanded waveforms
exhibit dramatically weaker scattering compared with the
plane waves in both cases, once the transient loading period
is over. Figure 3(d) shows that before the input switches off,
the fractional scattered energies of the expanded waveforms
for the lossless and lossy cavities decrease to 0.2 and 0.9

percent, respectively, while for the constant amplitude input, it
remains at 35 and 14.5 percent, corresponding to much weaker
relative scattering for the first case by factors of 178.7 and
16.3, respectively. For a discussion of the range of possible
modulation frequencies using our approach, see Appendix G.

IV. CONCLUSION

In summary, we have shown that a laser at threshold can,
in principle, be used to generate a class of waveforms at
optical frequencies (vt − z)mei(kz−ωt ) by iterative processing
of a constant amplitude input pulse (or by sending such a
pulse through a laser array). These waveforms can be used
to excite a resonator or detector with an optimal rising wave-
form, which strongly enhances wave capture, and absorption
if the cavity is lossy. Effectively, this provides a way to criti-
cally couple to an undercoupled cavity during the equilibrated
portion of the excitation. For more general resonators with
multiple input channel, the appropriate coherent multichannel
input must be applied. Exponentially rising waveforms are
well known to be of interest for cavity loading, with po-
tential applications in quantum information processing [39],
photonic circuits [40], and atom loading [19]. The increased
field and absorption rate could be used for enhanced signal
detection and light-matter interactions.

An interesting possibility would be to generate a second-
order integrator via a laser with an exceptional point at
threshold [41]. While the behavior in linear response of such
an EP laser is easily shown to provide such an integrator,
to implement an EP laser, additional conditions would need
to be satisfied [41]. We note that to successfully implement
our setup a fast switch on of the pulse is required, see
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Refs. [36–38] and Appendix B. The potential dramatic en-
hancement in temporal resolution and wave capture at optical
frequencies provided by such waveforms seems to us novel
and worthy of further study.
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APPENDIX A: THE CONTRIBUTION OF THE
SECOND INTEGRAL

Imposing causality, the second integral in Eq. (2) in the
main text reads

a(t ) ∗
∫ ∞

−∞
window

(
ω − ω1

�ω

)
1

(ω − ω1)2 eiωt dω

= a(t ) ∗ eiω1t sinc(t�ω) ∗ teiω1tθ (t ) = a(t )

2π
∗ eiω1t

× [2tSi(�ωt )+ πt + 2 cos(t )/�ω]θ (t )→ a(t ) ∗ eiω1t t,

where Si(z) = ∫ z
0 sin(t )/tdt and ∗ denotes convolution. From

the single-pole approximation, we get

Esc(t )

Einc
= − c

4l1n1

[
r1 + δ

(
t − 2l1n1

c

)
∗
]

e−iω1t tθ (t ). (A1)

APPENDIX B: SUGGESTED IMPLEMENTATION

A suggested implementation scheme is presented in
Fig. 4.

FIG. 4. A scheme of a suggested implementation. The design of the desired signal can be bottom to top. We start from the coefficient
of the last Taylor expansion component, calculate the input in the last laser using the transfer function, and add to this input the coefficient
of the second-to-last Taylor expansion component to get the output of the second-to-last laser, etc. The polarizing beam splitter transfers the
polarization of eiωt and reflects the perpendicular polarization obtained by propagating through a λ/4 waveplate, the laser, and then again the
λ/4 waveplate. Alternatively, one could use a Faraday rotator which is non-reciprocal. The square cw pulse with rise time below 10fs can be
generated with sum frequency generation of a strong laser pulse and cw laser, similarly to the two-photon absorption in Ref. [37].
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FIG. 5. The laser response for (a) Jext = 0.001 and (b) Jext = 0.05.

APPENDIX C: PARAMETERS OF THE LASER SETUP

Here we specify the laser parameters in our MEEP simula-
tion [17,28,35],

n1 =
√

ε1 +
γ⊥ d0

1+
|E |2
ωσ − ωa + iγ⊥

, 
 = γ 2
⊥

(ωσ − ωa)2 + (γ⊥)2 ,

γ⊥ = 4, d0 = θ2

h̄γ⊥

(
γ12 − γ21

γ12 + γ21
N0

)
= 0.06, ε1 = 2.25,

ωσ = 40.77, ωa = 40, l1 = 1, n1 = 1.50298 − 0.019i,

θ = 1, N0 = 37, γ12 = 0.005065, γ21 = 0.005,

where γ⊥ is the gain bandwidth, d0 is the pump amplitude,
θ is the light-atom interaction strength coefficient, γ12 is the
pump rate, γ21 is the nonradiative decay rate, N0 is the popu-
lation density, ωa is the atom transition frequency in the gain
medium, ωσ is the lasing frequency, and we have used SALT
units [17]. Note that our gain value is 1705 1/cm, which
is of the order of an experimentally realized gain at room
temperature of 940 1/cm and one can increase r1 to reduce
the gain, e.g., by introducing Bragg mirrors [32].

APPENDIX D: APPROXIMATING THE SPONTANEOUS
EMISSION IN THE LINEAR RESPONSE REGIME

Approximately only the resonant mode is dominant
in this calculation and we write Gμμ = Eμμ

ω2 p , E = E0 −∫ kdkdφ

(2π )2
sk

s−sk

4π p
ε2

Ek (z0 )E−k (z0 )
〈Ek |Ek〉 , where Ek is a full electrodynamic

eigenfunction, sk = ε2/(ε2 − ε1k ), s = ε2/(ε2 − ε1), ε1 and
ε2 are the cavity and free space permittivities, respectively,
and ε1k is the eigenpermittivity. 〈Ek|Ek〉 = ∫

dV E−k(r) ·
Ek(r) is the inner product in the cavity volume, z0 is the
dipole location, and E0 is the dipole field in a uniform medium
with the cavity permittivity [15,42,43]. Note that both the
denominator and numerator vanish for k = 0, which is the
magnitude of the k vector that is parallel to the interface.

APPENDIX E: EXCITATION OF THE LASER WITH
ADDITIONAL INCOMING FIELD AMPLITUDES

Here we excite the laser with 10 times smaller and 5 times
larger values of Einc and plot the responses in Figs. 5(a)

and 5(b). It can be seen that at low values of Einc, the scattered
field becomes wavy after the overshoot, and that at large
values of Einc, the response is more rapid.

APPENDIX F: RATE EQUATIONS FOR A LASER WITH A
CONSTANT DRIVE

We consider the rate equations for a three-level atom with
a fast 1 → 0 transition (for the I-SALT stability analysis, see
Appendix in Ref. [35]). We can thus use an effective two-
level description [44]. We write the equations for the photon
number n and population at the third-level N2 with a constant
drive,

dn

dt
= −2κn + DW n + T1

E2
inc

h̄
, (F1)

dN2

dt
= (N − N2)w20 − w12N2 − W N2n, (F2)

where 2κ is the inverse time of a photon in the cavity, which
for a laser at threshold reads 2κ = cG

n , where G is the gain, T1

the transmission coefficient, w20 the pump strength, w12 the
nonradiative decay coefficient, and W the stimulated emission
coefficient defined as W = 1

τ
c3

V 8πω2�ω
, where τ is the atom

lifetime, V is the laser volume, and �ω is the atom linewidth.
Since we assume a fast 1 → 0 transition, D = N2−N1≈N2

and we write
dD

dt
= (N − D)w20 − w12D − W Dn. (F3)

The stationary solutions read

0 = −2κn + DW n + T1
E2

inc

h̄
, (F4)

0 = (N − D)w20 − w12D − W Dn. (F5)

We substitute n = n0 + δn, D = D0 + δD in the equations
and omit the δDδn terms to get

dδn

dt
= −2κ (n0 + δn) + (D0n0 + n0δD + D0δn)W + T1

E2
inc

h̄
,

dδD

dt
= [N − (D0 + δD)]w20 − w12(D0 + δD)

−W (D0n0 + n0δD + D0δn).
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Subtracting the stationary equations, we obtain

dδn

dt
= (D0W − 2κ )δn + n0W δD,

dδD

dt
= δD(−w20 − w12 − W n0) − W D0δn.

We then simplify these equations using the stationary equa-
tions and get

dδn

dt
= −T1

E2
inc

h̄

1

n0
δn + n0W δD, (F6)

dδD

dt
= −Nw20

D0
δD − W D0δn, (F7)

where D0, n0 can be expressed from the stationary equations.
We guess solutions of the type

δn = Aeαt , δD = Beαt ,

and obtain (
α + T1

E2
inc

h̄

1

n0

)
A − Bn0W = 0, (F8)

W D0A +
(

α + Nw20

D0

)
B = 0. (F9)

We write, for α,

(
α + T1

E2
inc

h̄

1

n0

)(
α + Nw20

D0

)
+ n0W

2D0 = 0,

α2 +
(

T1
E2

inc

h̄

1

n0
+ Nw20

D0

)
α + T1

E2
inc

h̄

1

n0

Nw20

D0
+ n0W

2D0 = 0,

α1,2 = −
(

T1
E2

inc

h̄

1

n0
+ Nw20

D0

)
±

√(
T1

E2
inc

h̄

1

n0
+ Nw20

D0

)2

− 4

(
T1

E2
inc

h̄

1

n0

Nw20

D0
+ n0W 2D0

)
,

α1,2 = −
(

T1
E2

inc

h̄

1

n0
+ Nw20

D0

)
±

√(
T1

E2
inc

h̄

1

n0
− Nw20

D0

)2

− 4n0W 2D0.

Substituting 2κn0 − T1
E2

inc
h̄ = D0W n0, we get

α1,2 = −
(

T1
E2

inc

h̄

1

n0
+ Nw20

D0

)
±

√(
T1

E2
inc

h̄

1

n0
− Nw20

D0

)2

− 4W

(
2κn0 − T1

E2
inc

h̄

)
.

It is clear that the first term (outside of the square root) increases when we increase Einc since E2
inc increases more rapidly than

n0 [see Fig. 2(d)], and D0 decreases, which implies fast dynamics. Similar arguments follow for the second term in the square
root that can be negative, which means that at large values of Einc, there are no oscillations, in agreement with our simulation
results,

n±
0 = E2T1W − 2hκw12 − 2hκw20 + hNW w20 ±

√
[E2T1W + 2hκ (w12 + w20) + hNW w20]2 − 8h2κNW w20(w12 + w20)

4hκW
,

D±
0 = E2T1W + 2hκw12 + 2hκw20 + hNW w20 ∓

√
[E2T1W + 2hκ (w12 + w20) + hNW w20]2 − 8h2κNW w20(w12 + w20)

2hW (w12 + w20)
.

Under the assumption of a small drive, we get√
[E2T1W + 2hκ (w12 + w20) + hNW w20]2 − 8h2κNW w20(w12 + w20)

=
√

(E2T1W )2 + 2E2T1W [2hκ (w12 + w20) + hNW w20] + [2hκ (w12 + w20) + hNW w20]2 − 8h2κNW w20(w12 + w20),

a ≡ [2hκ (w12 + w20) + hNW w20]2 − 8h2κNW w20(w12 + w20),

√
a + (E2T1W )2 + 2E2T1W [2hκ (w12 + w20) + hNW w20]
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=
√√√√a

(
1 + (E2T1W )2 + 2E2T1W [2hκ (w12 + w20) + hNW w20]

a

)

≈ √
a

(
1 +

(
E2T1W

)2 + 2E2T1W [2hκ (w12 + w20) + hNW w20]

a

)
.

We also get (choosing the physical solutions)

n+
0 ≈

E2T1W − 2hκw12 − 2hκw20 + hNW w20 + √
a

(
1 + (E2T1W )2+2E2T1W [2hκ (w12+w20 )+hNW w20]

2a

)
4hκW

,

D+
0 ≈

E2T1W + 2hκw12 + 2hκw20 + hNW w20 − √
a

(
1 + (E2T1W )2+2E2T1W [2hκ (w12+w20 )+hNW w20]

2a

)
2hW (w12 + w20)

.

Since (2hκ (w12+w20 )+hNW w20 )√
a

> 1, n+
0 and D+

0 increase and decrease when increasing E2, respectively.
We can express Esat with n0,

dn

dt
= −2n0κ = −P/h̄ = −E2

sat/h̄,

Esat =
√

2h̄n0κ =
√

h̄n0

2nl1
ln (R1) =

√
h̄n0

2nl1
ln (R1).

Finally, we phenomenologically approximate W dn
dt = N2W n, n = AeN2W t , E = ekni�l = eknic/nr�t , E2 =

e2knic/nr�t , N2W = 2knic/nr, and W ≈ 2knic/(nrN2i ).

APPENDIX G: THE RANGE OF �s THAT CAN BE GENERATED

We now evaluate the modulation frequency range that can be used in this platform. First, it can be readily seen that for
the waveforms within this class, there are no observable deviations from the analytic expression (except for a short transient)
since there is no discretization of the signal and we conclude that their modulation frequency is very high. Then, for expanded
waveforms, we note that for a single Taylor expansion, we require 
t f � 3, where t f is the final pulse time, for the expansion to
be accurate using five waveforms. Then, for high-modulation frequencies, since the output is assumed to be valid from a certain
time, we also require that t f � max(2ln/c, 1/�ω), where �ω is a width in which the single-pole approximation is valid and is
of the order of the free spectral range, and also depends on the laser linewidth and gain bandwidth. Note that for long cavities,
one can require t f � 2ln/c, t f � 1/�ω, but �ω becomes small. Thus, we get 
 � 3/ max(2ln/c, 1/�ω) that we approximate
to be of the order of ω/5 for our laser. This limitation may be overcome by utilizing an epsilon near zero (ENZ) laser [45] or
reexpanding the output. On the other hand, for the Taylor expansion to capture significant temporal variations, one can require

t f � 1 and, due to the gain saturation we impose t f < tsat. Thus, we get 
 � 1/tsat, which in our case is 2 THz. This limit may
also be overcome by using a long ENZ laser. In conclusion, we obtain 1/tsat � 
 � 3/ max(2ln/c, 1/�ω).
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