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1 Field Plots for two-dimensional band structure

Field plots for all modes at Γ for Figure 1b.

(b)(a)

140

160

180

200

260

280

E
2 

T
E

 Γ
(1

)
E

2
T

M
Γ(

1)
E

2 
T

M
 Γ

(3
)

TM

TE

Γ M

F
re

qu
en

cy
 (

T
H

z)

k

+-

TMTM

Hz

+- Ez

TE

Figure S1: Additional Field Profiles. (a) Field profiles for all TE and TM modes at Γ-point. (b)

Band structure reproduced from Figure 1b for the reader’s convenience.
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2 Expanded group theory discussion and graphical method

Several potential methods for breaking symmetry are proposed in Figure S2. These examples are

representative of three practical aspects that should be considered when using group theory for

designing symmetry-protected degenerate BICs. The three aspects are: (1) final symmetry of the

perturbed field, (2) mode overlap with plane waves, and (3) path of symmetry degeneration.

(1) The symmetry of the perturbed field (Γψ1) is the direct product of the symmetry of the per-

turbation (Γv) and the reduced mode symmetry (Γψ0) leading to Γψ1 = Γv×Γψ0
1. As a result

of this direct product, the perturbed field and reduced mode symmetry are not required to

belong to the same irreducible representation. This difference in irreducible representation

makes it necessary to think of symmetry breaking in terms of space group symmetry of the

reduced lattice instead of point group symmetry. In the example of deforming the resonators

to squares (Figure S2b), the reduced lattice belongs to the cmm space group. These modes

remain BICs since the perturbed fields (A1 and A2 irreducible representations) are even un-

der C2. Instead, if the resonators are deformed into half-square, half-circle resonators (Figure

S2c) the lattice is reduced into the cm space group where the perturbed fields are no longer

even under C2 (A and B). This means that for the case of half-square, half-circle deformation

the degenerate BICs are converted to two non-degenerate quasi-BICs capable of radiating to

free space.

(2) When alternating rows of resonators are displaced (Figure S2d,e), the symmetry selection

rules allow coupling to free space. Despite this allowance, the non-degenerate quasi-BICs

are difficult to observe from free space. While the selection rules provide information on

whether a mode can couple to free space, they contain no information on the coupling effi-

ciency and Q-factor. As a result, the perturbed mode overlap with the far-field needs to be

considered when choosing methods to break symmetry.

(3) Instead of performing a single symmetry breaking operation, symmetry breaking deforma-

tions can be viewed as a series of deformations that are separated by space group symmetry.
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For example, by deforming the circular resonators to triangles (Figure S2f) the symmetry

is reduced to p31m lattice where the symmetry-protected degenerate BICs are reduced into

symmetry-protected quasi-BICs with finite Q-factor. If this lattice is contracted along the

vertical axis (Figure S2g) the symmetry is reduced even further to cm which lifts the de-

generacy. By thinking of these symmetry breaking techniques as two distinct of symmetry

breaking operations it is possible to tune Q-factor and frequency splitting independently.
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Figure S2: Methods for symmetry breaking. (a) Unperturbed triangular lattice of dielectric

cylinders with rhombus primitive cell. The unperturbed lattice has C6v, C3v, C2v, and Csv sym-

metry. (b) By deforming the cylindrical resonators to squares C6v and C3v symmetries can be

broken lifting the degeneracy, but C2v symmetry is preserved reducing the lattice to the cmm

space group with non-degenerate symmetry-protected BICs. (c) Deforming the resonators into

half-square, half-circle breaks C2v symmetry, reducing the space group to cm and converting the

symmetry-protected degenerate BICs to non-degenerate quasi-BICs. (d) Translating alternating

rows of resonators vertically can break C6v and C3v symmetries. The perturbed field symmetry

is reduced to pmg, which converts the symmetry-protected BICs to non-degenerate quasi-BICs.

Even if the translation is performed away from any symmetry lines (e) C2 symmetry remains. This

reduces the perturbed field symmetry to p2 which still results in two non-degenerate quasi-BICs.

(f) A combination of resonator and lattice deformations can be used for symmetry breaking. By

deforming the cylindrical resonators into triangles, C6v and C2v symmetries are broken degenerat-

ing the lattice to p31m space group. For this space group, the symmetry-protected degenerate BICs

are converted to degenerate quasi-BICs. (g) By contracting or dilating the lattice in one direction

the triangular lattice is transformed into a cm lattice lifting the degeneracy. A combination of these

symmetry deformations allows control of Q-factor and mode splitting.
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Figure S3: Graphical derivation method. Graphical derivation of selection rules for all lattice

and resonator deformations shown in Figure S2
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3 Additional reflectance spectra and SEM micrographs for engineering Q-factor and split-

ting

Additional spectra for S = 0.9 are shown in Figure S4. SEM micrographs for all geometries are

presented in Figure S5.
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Figure S4: Additional reflectance measurements. Additional reflectance measurements for S =

0.9 presented with spectra shown in Figure 4
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Figure S5: SEM micrographs for tuning Q-factor and mode splitting. SEM micrographs of all

experimental samples from Figure 4 and Figure S4.

Experimental observation of symmetry-protected degenerate BICs using single resonator

symmetry breaking parameter to control splitting and Q-factor

To illustrate a single symmetry breaking parameter converting the symmetry-protected degenerate

BICs to non-degenerate quasi-BICs, we used half-circle, half-square resonator deformations. For

this experimental demonstration, we fabricated silicon metasurfaces on fused silica substrates using

standard nanofabrication techniques (see Methods). The fabricated metasurfaces had the following

dimensions: period - 1000 nm, thickness - 200 nm, and bar width - 100 nm. The diameter of the

resonators was 790 nm when no symmetry breaking (S = 0) was present.

We performed full-wave electromagnetic eigenvalue simulations to understand the behavior

of the symmetry-protected degenerate BICs as symmetry is smoothly broken. The wavelength

and Q-factors for the E(1)
2 degeneracy are shown in Fig. S6a. As expected, when resonators are

circles (S = 0) the modes are degenerate with resonance wavelengths 1459 nm. The Q-factors
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for both of these modes are 109 ≈ ∞ (limited by numerical precision) since the modes are BICs

that are fully-decoupled from free space. The mode profiles for the E(1)
2 BICs are presented in Fig.

S6b. The symmetry of the field profiles show that both modes are even with respect to C2 and are

therefore symmetry-protected degenerate BICs. When the symmetry breaking parameter is non-

zero the p6mm (C6v) lattice is deformed into a cm lattice which causes the symmetry-protected

degenerate BICs to be converted to non-degenerate quasi-BICs since both C2 and C3 symmetries

are broken. As the symmetry breaking parameter is increased the Q-factors decrease continuously

and the mode spacing increases.

The fabricated metasurfaces had symmetry breaking parameters ranging from S = 0 to

S = 0.99. Scanning electron micrographs of the metasurfaces are displayed in Fig. S6c. To

characterize the ability to access the symmetry-protected degenerate BICs from free space, we

performed normal incidence reflectance measurements using unpolarized light. Simulated and

experimentally measured reflectance spectra are presented in Fig. S6a and S6b respectively. As

predicted, when no symmetry breaking is present (S = 0) the E(1)
2 and E(2)

2 symmetry-protected

degenerate BICs are not observable from free space. When the symmetry breaking parameter is

increased to S = 0.8, the non-degenerate quasi-BICs can be seen in both simulated and measured

spectra. Increasing the symmetry breaking even further to S = 0.9 leads to a mode splitting of

only 2 nm in simulations with Q-factors 3440 and 5750. In comparison, in the measured spectrum

we observed a 4 nm splitting and the observed Q-factors were 290 and 450. The increased splitting

can be attributed to symmetry breaking due to fabrication imperfections, since the total symmetry

breaking is the combination of symmetry breaking from design and imperfections. Increasing the

symmetry breaking parameter even further to S = 0.99, increased the mode splitting to 7 nm and

10 nm for both simulated and measured spectra respectively. In comparison, the experimentally

measured Q-factors only slightly decrease to 278 and 430. The experimentally measured decrease

is significantly smaller than the two-fold reduction observed in simulations because the radiative

component from imperfection induced symmetry breaking and non-radiative components limit the

maximum attainable Q-factor. This experimental demonstration exemplifies the advantage of engi-

neering symmetry-protected degenerate BICs. While the mode locations between simulations and

8



2 μm

(a) (e)(c)

2 μm

2 μm

2 μm

2 μm

(d)

S - 0

S - 0.4

S - 0.8

S - 0.9

S - 0.99

E2
(1) 

Mode 1

E2
(1) 

Mode 2

E2
(1)  

E2
(1)  

Symmetry Breaking Parameter (S)
0 0.40.2 0.6 0.8 1

W
av

el
en

gt
h 

(n
m

) 1480

1460

1440

1420

1400

Q
-f

ac
to

r

1010

106

102

(b)

Hz (a.u.)

-

+

Symmetry Breaking

S = 0.99S = 0

Wavelength (nm)
15001300 1400

Wavelength (nm)
15001300 1400

R
ef

le
ct

an
ce

 (
sh

ift
ed

)

3

2

1

0

S = 0

S = 0.4

S = 0.8

S = 0.9

S = 0.99

S = 0

S = 0.4

S = 0.8

S = 0.9

S = 0.99

E2
(2) 

*

*
E2

(1) 

+
+

E2
(1) 

+ +
E2

(2) 

**

MeasuredSimulated

Figure S6: Experimental demonstration of symmetry-protected degenerate BICs. (a) Wave-

length and Q-factor for the E(1)
2 modes from full-wave simulations for half-square, half-circle sili-

con resonators in a triangular lattice an fused silica substrate. When the symmetry breaking param-

eter is zero (cylindrical resonators) the E(1)
2 modes are degenerate BICs. As the symmetry breaking

is increased the modes split and the Q-factor decreases as the modes become non-degenerate quasi-

BICs. (b) Field profiles of Hz for E(1)
2 modes with cylindrical resonators (S=0) and half-square,

half-circle resonators (S=0.99). (c) Scanning electron micrographs of fabricated metasurfaces with

symmetry breaking parameters from S=0 to S=0.99. Full-wave simulations (d) and experimental

measurements (e) of reflectance of a silicon metasurface. As the symmetry breaking parameter is

increased from zero, quasi-BICs appear from the E(1)
2 and E(2)

2 modes.
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experiments differ by 90 nm, the experimental mode splitting deviates from simulated results by

only 3 nm. Furthermore, the observed normalized splitting (∆ω
ω̄

) was only 5× 10−3 corresponding

to 0.9THz.

Resonator deformations to control mode spacing

Instead of using lattice deformations to break C3 and control the mode spacing, it is possible

to use resonator deformations. To illustrate this we performed full-wave eigenvalue simulations

when deforming cylindrical resonators to square prisms as depicted in Fig. S7a. Through this

deformation, C6 and C3 symmetries are broken resulting in a lattice that belongs to the cmm

space group resulting in the symmetry-protected degenerate BICs becoming non-degenerate BICs.

Correspondingly, as the symmetry breaking parameter is increased the mode splitting increases as

shown in Fig. S7b, but since both modes are BICs the Q-factors remain ≈ ∞ for all symmetry

breaking parameters as confirmed in Fig. S7c.
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Figure S7: Circle to square deformation to control splitting (a) Schematic illustrating deforming

the cylindrical resonators in a triangular lattice to square prism resonators. This breaks C6 and C3

symmetries reducing the the symmetry from a lattice belonging to the p6mm space group to one

belonging to the cmm space group causing the symmetry-protected degenerate BICs to become

non-degenerate BICs. This can be observed from the mode wavelengths (b) and Q-factors (c) as a

function of symmetry breaking. As the the cylindrical resonators are deformed into square prisms

the degeneracy is lifted. But since the modes are non-degenerate BICs, the modes remain BICs

with Q-factors ≈ ∞ for all symmetry breaking parameters.
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Lattice deformations to control mode spacing and Q-factors

To show a single lattice deformation capable of controlling mode spacing and Q-factors we per-

formed full-wave eigenvalue simulations when the symmetry breaking operation was shifting al-

ternating rows of resonators. A schematic of this symmetry breaking operation is presented in Fig.

S8a. Shifting alternating rows of resonators causes all symmetries to be broken resulting in a lat-

tice belonging to the p1 space group. This symmetry reduction, results in the symmetry-protected

degenerate BICs in becoming non-degenerate quasi-BICs. This behavior is confirmed by the full-

wave eigenvalue simulations. As the resonator deformation is increased from 0 nm the degeneracy

is lifted (Fig. S8b) and the Q-factors (Fig. S8c) drop from infinity.

(a) (b) (c)

Non-Degenerate quasi-BICs

Diagonal
Shift

p6mm C6v → E2

Degenerate BICs

C6v, C3v, C2v, C2, Cs 
p1 C1 → A,A

C6v, C3v, C2v, C2, Cs 

0 20 40 60 80 100
Diagonal Shift (nm)

1462

1464

1466

1468

W
av

el
en

g
th

 (
n
m

)

0 20 40 60 80 100
Diagonal Shift (nm)

102

104

106

108

Q
-f

ac
to

r

Figure S8: Shifting alternating rows of resonators to control splitting and Q-factors (a)

Schematic illustrating shifting alternating rows of cylindrical resonators. This deformation breaks

all symmetries reducing the the symmetry from a lattice belonging to the p6mm space group to

one belonging to the p1 space group causing the symmetry-protected degenerate BICs to become

non-degenerate quasi-BICs. This effect can be observed in the wavelengths (b) and Q-factors (c).

As expected, when the displacement is nonzero the degeneracy is lifted and the Q-factors become

finite.
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Effect of nonzero angle of incidence

In the experimental measurements, the angle of incidence was maintained less than 1°. Nonzero

angle of incidence results in symmetry breaking. To determine the effect of angle of incidence on

symmetry reduction, we performed full-wave electromagnetic simulations of reflectance (Fig. S9a)

when the resonator symmetry breaking (S) was 0.4 and lattice deformation (δ) of 0 nm for angles

ranging from 0° to 3°. From the calculated reflectance spectra, as the angle of incidence is increased

the induced symmetry breaking results in the degeneracy being lifted and a reduction of the Q-

factors. The calculated mode splitting (Fig. S9b) was recovered from the simulated reflectance

curves by fitting the spectra with two Fano resonances. When the angle of incidence reaches 1°

the mode splitting increases to 0.3 nm. Increasing the angle of incidence further to 3° results in a

splitting of 2.7 nm. These calculated mode splittings are below the experimentally measured mode

splittings for the half-circle, half-square resonator deformation case which observed splittings of

4 nm and 10 nm demonstrating that nonzero angle of incidence is not the largest contributor to

symmetry breaking. For additional confirmation, we fit the experimentally measured reflectance

measurements (Fig. S9c) of degenerate quasi-BICs when the resonator symmetry breaking (S) was

0.4 and lattice deformation (δ) of 0 nm. Using a two Fano resonance fit resulted in a mode splitting

of 1.5 nm representing an upper bound on the effect of angle of incidence since symmetry breaking

can be caused by both nonzero angle of incidence and fabrication imperfections. This observed

mode splitting would correspond to an angle of incidence of 2.2° for the case when nonzero angle

of incidence was the only source of symmetry breaking.
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Figure S9: Effect of nonzero angle of incidence (a) Calculated reflectance spectra when the

angle of incidence is nonzero. (b) To calculate the effect of angle of incidence on mode splitting,

the calculated reflectance spectra were fit with two Fano resonances. As the angle of incidence

was increased from 0° the degeneracy was lifted. (c) Representative experimentally measured

reflectance spectra for the case when the modes are degenerate quasi-BICs (S=0.4, δ =0nm).

Fitting the reflectance spectra with two Fano resonances results in a mode splitting of 1.5 nm

providing a metric for the amount of symmetry breaking from nonzero angle of incidence and

fabrication imperfections.
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Effect of lattice contraction direction

To understand the role of lattice contraction direction on mode splitting and Q-factors we per-

formed full-wave eigenvalue simulations for three lattice contraction directions: vertical, 63.4°

diagonal, and horizontal. A schematic of the three contraction directions with respect to the tri-

angular lattice is presented in Fig. S10a. For all cases, the C2 symmetry breaking parameter (S)

was 0.6. The calculated Q-factors and mode splittings (Fig. S10b) show that the choice of lattice

contraction direction can have three quantitative effects. First, for a given mode splitting the mean

Q-factors can depend strongly on contraction direction. For example, when the splitting was near

25 nm, the mean Q-factors (Q) for the vertical and horizontal cases are 2700 and 2730 respec-

tively. In comparison, for the diagonal contraction case the calculated Q-factors were significantly

higher with a Q of 3380. The second effect is the difference between the maximum (Qmax) and

minimum (Qmin) Q-factors (∆Q = |Qmax − Qmin|). For the diagonal contraction case, the cal-

culated ∆Q when the mode splitting is close to 25 nm is 1110. This difference reduces to 980

for the horizontal contraction case. The smallest ∆Q is obtained for the vertical contraction with

a difference of 920. The final quantitative effect of lattice contraction direction is the degree of

symmetry breaking for a given amount of lattice contraction. For the diagonal contraction case,

the unit cell area has been reduced the most, but only achieves a mode splitting of around 25 nm.

While the unit cells are larger for the vertical and horizontal cases, they achieve mode splittings of

45 nm and 41 nm respectively. The reduced splitting in the diagonal case can be attributed to the

fact that the diagonal lattice contraction is closer to preserving the triangular lattice (albeit with a

scaled periodicity). If the lattice contraction direction only scaled the periodicity of the triangular

lattice, C3 symmetry would be preserved and the modes would remain degenerate. Combined,

these three quantitative effects from lattice contraction direction demonstrate how the choice of

symmetry breaking method can significantly affect device performance and provide insight into

potential routes to optimize symmetry breaking operations.
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Figure S10: Effect of lattice contraction direction on Q-factor (a) Schematic denoting three

different directions for contracting the triangular lattice. (b) Calculated Q-factors from full-wave

eigenvalue simulations for vertical, horizontal, and diagonal lattice contractions. For equivalent

mode splitting values the mean Q-factor (Q) and difference between Qmax and Qmin can differ

significantly.
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