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Photonic topological insulators exhibit bulk-boundary correspondence, which requires that boundary-
localized states appear at the interface formed between topologically distinct insulating materials. However,
many topological photonic devices share a boundary with free space, which raises a subtle but critical
problem as free space is gapless for photons above the light line. Here, we use a local theory of topological
materials to resolve bulk-boundary correspondence in heterostructures containing gapless materials and in
radiative environments. In particular, we construct the heterostructure’s spectral localizer, a composite
operator based on the system’s real-space description that provides a local marker for the system’s topology
and a corresponding local measure of its topological protection; both quantities are independent of the
material’s bulk band gap (or lack thereof). Moreover, we show that approximating radiative outcoupling as
material absorption overestimates a heterostructure’s topological protection. As the spectral localizer is
applicable to systems in any physical dimension and in any discrete symmetry class (i.e., any Altland-
Zirnbauer class), our results show how to calculate topological invariants, quantify topological protection,
and locate topological boundary-localized resonances in topological materials that interface with gapless
media in general.
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Recent advances in topological photonics [1–3] have led
to the development of novel technologies including topo-
logical lasers [4–12] and devices that create and route
quantum light [13–20]. However, the utility of many of
these devices is predicated on the presence of, and potential
coupling to, scattering channels in the surrounding envi-
ronment that are degenerate with the boundary-localized
topological states that underpin these devices’ function-
ality. Thus, even though these devices can feature photonic
crystals or other lattices with complete topological band
gaps in their interior, their boundary-localized states are
generally resonances, not bound modes, that radiate into
the surrounding environment as free space is gapless above
the light line.
Unfortunately, the fact that the typical environment for

topological photonic structures is gapless, rather than
gapped (i.e., insulating), presents a fundamental challenge
to our understanding of these devices. Heuristically, topo-
logical boundary-localized modes form at the interface
between two gapped materials with different bulk invari-
ants as a resolution to the need for band continuity across
the heterostructure’s interface; the band gap must close in
the vicinity of the interface so that the different bulk
invariants can be reconciled, yielding interface-localized
states [1] [Fig. 1(a)]. Indeed, traditional approaches to
material topology have been highly successful at predicting
the interface phenomena in heterostructures featuring
topologically nontrivial insulators [3,21–24] and semimet-
als [25–37]. But, if at least one of the materials in a

heterostructure is gapless, this explanation fails, as the band
gap must close in the vicinity of the interface regardless (so
as to satisfy bulk band continuity between the two materi-
als); any need to reconcile different bulk material topologies
could occur as part of this standard band closing process
without resulting in topological interface-localized states or
resonances [Fig. 1(b)]. Note, in this context “gapless”
specifically refers to a d-dimensional material with (d − 1)-
dimensional isofrequency contours over a given range of
wavelengths (i.e., those wavelengths in the other material’s
bulk band gap). Thus, the plethora of photonic experiments
that have observed topological boundary-localized resonan-
ces in devices that abut and radiate to free space suggests that
material topology must be definable in heterostructures

FIG. 1. (a) Schematic of the local density of states as the probed
position is varied across the interface of a heterostructure formed
by a trivial insulator and topological insulator with a common
bulk band gap. (b) A similar schematic, except in which the trivial
material is gapless.
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containing a gapless material, even if the lack of a global
bulk band gap prohibits the use of traditional theories of
physical topology.
Here, we identify topological boundary-localized reso-

nances and quantify their protection in gapless hetero-
structures with radiative environments using a theory of
topological materials based on their real-space description.
To do so, we construct the heterostructure’s spectral local-
izer, a composite operator that combines a system’s
Hamiltonian and position operators with a Clifford repre-
sentation, and which provides local topological markers and
a spatially resolved measure of protection even for non-
Hermitian systems. We demonstrate this topological clas-
sification approach on a 2D photonic Chern crystal
embedded in free space with radiative boundary conditions.
Using this model, we also show that radiative losses and
material absorption have qualitatively different conse-
quences for a system’s topological protection, and approxi-
mating radiative outcoupling as absorptionwill substantially
overestimate the protection of the boundary-localized res-
onances. Finally, we provide an example of how topologi-
cal robustness against system disorder manifests in this
real-space classification approach. Our results reveal that
bulk-boundary correspondence persists in gapless hetero-
structures, providing a rigorous framework for understand-
ing many types of topological photonic devices.
We begin by considering a prototypical topological

photonic system consisting of a photonic Chern insulator
embedded in free space. In particular, we use a finite portion
of the 2D magneto-optic photonic crystal proposed by
Haldane and Raghu [38,39] surrounded on all sides by
vacuum, with the radiative boundary condition implemented
using stretched-coordinate perfectly matched layers (PML)
[40] [Fig. 2(a)].When an external magnetic field is applied, a
topologically nontrivial band gap opens in the photonic
crystal’s transverse electric (TE) sector that supports chiral
edge modes within this gap [Fig. 2(b)]. As the photonic
crystal in ourmodel system is finite, all of its states, including
its chiral edge modes, are resonances as they decay due to
radiative outcoupling. These chiral edge resonances can be
seen in the system’s local density of states within the bulk
band gap of the photonic Chern insulator [Fig. 2(c)].
Altogether, this model system preserves all of the salient
features ofmany topological photonic systems that have been
previously experimentally observed [41,42], but whose
topological protection cannot be quantified using topological
band theory because the materials that form the heterostruc-
ture lack a common bulk band gap.
Instead, to show that the gapless heterostructure in

Fig. 2(a) must possess protected boundary-localized reso-
nances due to the nontrivial topology of the central lattice,
we employ the spectral localizer [43–45]. For a d-dimen-
sional system, the spectral localizer is a composite operator
that combines the system’s Hamiltonian H and position
operators X1; X2;…; Xd using a nontrivial Clifford repre-
sentation, and yields both a local topological marker and
local measure of protection. For the non-Hermitian 2D

system that we consider here, we can use the Pauli matrices
as the Clifford representation [as they generate a repre-
sentation of Cl3ðCÞ] to write the spectral localizer as [46]

Lðx;y;ωÞðX; Y;HÞ

¼
�

H − ωI κðX − xIÞ − iκðY − yIÞ
κðX − xIÞ þ iκðY − yIÞ −ðH − ωIÞ†

�
:

ð1Þ

FIG. 2. (a) Schematic of a 2D photonic Chern insulator em-
bedded in free space εfs ¼ 1 with radiative boundary conditions.
The topological photonic insulator is composed of dielectric rods
εrod ¼ 14 with spacing a in a magneto-optic background
εmo ¼ ð1iν −iν1 Þ. (b) Bulk band structure for the photonic Chern
insulator for the TEmodes with ν ¼ 0 (light red) and ν ¼ 0.4 (dark
red), and the transversemagnetic (TM)modes that are independent
of ν. (c),(d) Local density of states (c) and local gap μðx;y;ωÞ (d) for
the finite system at ω ¼ 0.37ð2πc=aÞ, shown on the same spatial
scale as (a). (e) Spectral flow of the real parts of the 20 eigenvalues
of Lðx;y;ωÞ closest to 0 for y fixed to the center of the finite system
[green line in (d)], and at ω ¼ 0.37ð2πc=aÞ. (d) and (e) are
calculated using κ ¼ 0.04ð2πc=a2Þ.
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Here, x, y, ω are the choices of position and frequency
where the spectral localizer is evaluated, X and Y are the 2D
position operators, I is the identity matrix, and κ is a
positive scaling coefficient with units of frequency times
inverse distance.
Intuitively, the spectral localizer can be viewed as a

composition of the eigenvalue equations [such as
ðH − ωIÞjψi ¼ 0] of the (generally) noncommuting oper-
ators X, Y,H using the Pauli matrices. Despite the lack of a
joint spectrum for X, Y, H, the spectral localizer can be
used to determine whether a given choice of x, y, ω yields
an approximate joint eigenvector of X, Y, H, i.e., is there
some vector jϕi for which Hjϕi ≈ ωjϕi, Xjϕi ≈ xjϕi, and
Yjϕi ≈ yjϕi [47]. A measure of how good these approxi-
mations are is given by

μðx;y;ωÞðX; Y;HÞ ¼ min ðjRefσ½Lðx;y;ωÞðX; Y;HÞ�gjÞ; ð2Þ

i.e., the minimum distance over all of the eigenvalues of
Lðx;y;ωÞ from the imaginary axis, where σðLÞ is the
spectrum of L. Smaller values of μðx;y;ωÞ indicate that x,
y, ω are closer to yielding a joint eigenvector of X, Y, H.
However, even if μðx;y;ωÞðX; Y;HÞ ¼ 0, these approxima-
tions do not become exact (noncommuting operators
generally cannot be even partially simultaneously diagon-
alized) [43,47].
A physical picture of the spectral localizer’s connection

to material topology can be built from the behavior of

atomic limits. In an atomic limit, ½HðALÞ; XðALÞ
j � ¼ 0, which

stems from the system’s Wannier functions being localized
to a single lattice site [48]. This commutation relation,
coupled with the fact that position operators commute
½Xj; Xl� ¼ 0, requires the eigenvalues of Lðx;y;ωÞ to be
equally partitioned between having positive and negative
real parts for any choice of x, y, ω. In other words, for
atomic limits sig½Lðx;y;ωÞ� ¼ 0, where sig denotes a matrix’s
signature, its number of eigenvalues with positive real parts
minus its number with negative real parts [49]. However,
just as 0D systems can be topologically classified based on
the number of eigenvalues they possess above and below a
specified band gap [50], 2D systems can be locally
classified based on the partitioning of the spectrum of
Lðx;y;ωÞ, assuming that μðx;y;ωÞ > 0 [43].
Thus, if a generic system with ½H;Xj� ≠ 0 has

sig½Lðx;y;ωÞ� ¼ 0, then it is continuable to an atomic limit
via a path of invertible matrices for that choice of x, y, ω,
i.e., the system is locally topologically trivial. Conversely,
if sig½Lðx;y;ωÞ� ≠ 0, there is an obstruction to finding such a
path, and the system is topologically nontrivial at that x, y,
ω. As this classification approach is not restricting the
matrix continuation path to preserve any system sym-
metries, the signature of Lðx;y;ωÞ defines a local Chern
marker [43,46],

CL
ðx;y;ωÞðX; Y;HÞ ¼ 1

2
sig½Lðx;y;ωÞðX; Y;HÞ�∈Z: ð3Þ

For semi-infinite Hermitian systems, CL
ðx;y;ωÞ is provably

equal to the Chern number [45]. Moreover, as the parti-
tioning of the spectrum of Lðx;y;ωÞ cannot change without
μðx;y;ωÞ ¼ 0, μðx;y;ωÞ is a measure of the topological pro-
tection in a system and can be thought of as a “local
band gap.”
Altogether, the spectral localizer can be understood as a

method for performing dimensional reduction consistent
with Bott periodicity [43]. After dimensional reduction, the
local invariants for all ten discrete symmetry classes (i.e.,
Altland-Zirnbauer classes [51–53]) become essentially one
of the three invariants introduced by Kitaev [50]: matrix
signatures for Z invariants, or signs of determinants or
signs of Pfaffians for Z2 invariants. Additionally, one can
consider Lðx;y;ωÞ to be the Hamiltonian of a modified
system, enabling the local gap and local index to be
experimentally observed [54].
To apply the spectral localizer to the photonic crystal

heterostructure considered in Fig. 2(a), we first reformulate
Maxwell’s equations into a Hamiltonian, with

HðxÞ¼M−1=2ðxÞWM−1=2ðxÞ;

W¼
�

0 −i∇×

i∇× 0

�
; and MðxÞ¼

�
¯̄μðxÞ 0

0 ¯̄εðxÞ

�
: ð4Þ

In doing so, we are assuming that the frequency depend-
ence of the permittivity ¯̄ε and permeability ¯̄μ tensors can be
neglected over the frequency range of interest, and that both
are semipositive definite [55]. To use this Hamiltonian in
Eq. (1), it must be discretized so that it becomes a bounded,
finite matrix. Here, we use a 2D Yee grid [56]. The
discretization scheme also defines the position operators
X, Y, which in the basis of Eq. (4) are diagonal matrices
whose elements ½X�jj and ½Y�jj correspond to the spatial
coordinates of the jth vertex in the discretization. Note that
the stretched-coordinate perfectly matched layers make W
non-Hermitian.
Overall, the spectral localizer’s numerical approach

is similar to frequency-domain methods for solving
Maxwell’s equations because only a single frequency is
considered within a given simulation. However, as Eq. (1)
also requires specifying x, y for each simulation and Lðx;y;ωÞ
is connected to the approximate joint eigenvectors of X, Y,
H (i.e., their so-called multioperator pseudospectrum), the
spectral localizer approach is better classified as a “pseu-
dospectral-domain” method. Thus, our implementation of
Eq. (1) is a finite-difference pseudospectral-domain method
and is publicly available [57,58].
Applying the spectral localizer to the topological pho-

tonic system considered in Fig. 2(a) shows, that for
frequencies within the topological band gap of the photonic
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Chern crystal, the local gap μðx;y;ωÞ closes around
the boundary of the crystal, inside which the local
Chern number becomes nontrivial CL

ðx;y;ωÞ ¼ 1 [Fig. 2(d)].

Moreover, monitoring the spectrum of Lðx;y;ωÞ near zero as
one of the coordinates is varied across the system (fixing
the other coordinate and ω) reveals the lone eigenvalue of
Lðx;y;ωÞ responsible for the change in the system’s local
Chern marker [Fig. 2(e)]. As locations where μðx;y;ωÞ ≈ 0

indicate the presence of an approximate eigenstate of H
(with eigenvalue near ω that is simultaneously approxi-
mately localized near x, y), the local gap closing around the
topological photonic crystal is the manifestation of bulk-
boundary correspondence in the spectral localizer frame-
work. Thus, the spectral localizer demonstrates that the
boundary-localized resonances observed in topological
photonic systems embedded in free space stem from the
topological material, and the nonzero localizer gap
[μðx;y;ωÞ > 0] in free space away from the interface (despite
free space’s gaplessness) is a measure of the resonances’
topological protection.
The spectral localizer’s dependence on the choice of κ in

Eq. (1) can initially appear problematic. Indeed, for κ ¼ 0,
Lðx;y;ωÞ is block-diagonal, and its spectrum is always evenly
partitioned such that CL ¼ 0. Conversely, for κ ≫ 1,
Lðx;y;ωÞ simply reveals the (exact) joint spectrum of X
and Y. However, in between these two limits there is a
broad range of κ over which a material’s topological
properties can be correctly predicted and remain effectively
constant. In insulators, such a range always exists [44].
Moreover, in practice we find for our model system that κ
can be varied over more than 2 orders of magnitude while
CL
ðx;y;ωÞ remains unaffected and μðx;y;ωÞ only varies over a

factor of 2; see Supplemental Material [58].
Having shown that the chiral edge resonances seen in

Fig. 2 are of topological origin, we now demonstrate their
topological protection. In general, a system’s topology at x,
y, ω cannot change without μðx;y;ωÞ → 0, as the local gap
must close for one (or more) of the spectral localizer’s
eigenvalues to cross the imaginary axis. For Hermitian
systems, one can prove that for a system perturbation δH to
close the local gap μðx;y;ωÞðX; Y;H þ δHÞ ¼ 0, this pertur-
bation must be at least as strong as the local gap is wide
kδHk ≥ μðx;y;ωÞðX; Y;HÞ [43,67]. For non-Hermitian line-
gapped systems, this same criteria approximately holds
[46]. However, this known limit is not useful for evaluating
the topological protection of photonic systems. The prob-
lem is that Maxwell’s equations (prior to discretization)
represent an unbounded operator, for which the l2 norm is
undefined. Thus, after discretization, even relatively
modest perturbations will generally still yield substantial
changes in the eigen frequency of at least one high
frequency state, yielding a large kδHk. Intuitively, the
challenge is that μðx;y;ωÞ is a local measure of protection in

both position and frequency, yet kδHk is a global measure
of the perturbation.
Here, we conjecture that a correct measure of a perturba-

tion’s local strength is to project it into a subspace near x, y,
ω. For ourmodel system, letΨ be ann-by-mmatrixwhosem
columns are the eigenvectors of H (which is n by n) with
eigenvalues that are closest to ωwhere μðx;y;ωÞ is calculated.
Then, the local marker at x, y, ω cannot change so long as
kΨ†δHΨk≲ μðx;y;ωÞðX; Y;HÞ. Note, this conjectured crite-
ria is a necessary but not sufficient condition. For example,
changes to the high-dielectric rods’ positions and ellipti-
city require a substantially stronger perturbation to change
the system’s local topology (Fig. 3). In contrast, removing
the external magnetic field, ν ¼ 0 in εmo, makes the
full system topologically trivial and corresponds to
kΨ†δHΨk=μ0 ¼ 1.81, nearly saturating the conjectured
bound.
Beyond predicting a system’s topological protection

against crystal imperfections, the spectral localizer can
also be used to approximate a system’s robustness to
surface roughness. In particular, while crystal imperfec-
tions serve to decrease the system’s bulk band gap, the
effects of which can be captured using topological band
theory, the dominant effect of surface roughness is to
increase a system’s radiative outcoupling. Thus, surface
roughness cannot be considered without having a measure
of topological protection for heterostructures lacking a
global band gap. Here, we artificially increase our model
system’s radiative outcoupling by increasing the dielectric
constant of the surrounding free space environment εfs. As
can be seen in Fig. 4(a), even for values of εfs greater than
any material in the photonic Chern insulator, the spectral
localizer is still able to predict the topology of the crystal, as

FIG. 3. Local gap and overlaid topological marker (CL ¼ 1
bounded by a magenta line) for the system shown in Fig. 2(a)
with added disorder with strengths kΨ†δHΨk=μ0 ¼ 1.40 (left)
and kΨ†δHΨk=μ0 ¼ 41.73 (right) relative to the local gap at the
center of the ordered system μ0 ¼ 0.0185ð2πc=aÞ. Disorder has
been added to the high dielectric rod positions and dimensions
and the disorder strength is calculated using the m ¼ 370
eigenvectors of H closest to ω; see Supplemental Material
[58]. Both figures are shown using the same spatial scale as
Fig. 2(d), with ω ¼ 0.37ð2πc=aÞ and κ ¼ 0.04ð2πc=a2Þ.
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well as the decreasing robustness of the chiral edge state.
Given the connection between μðx;y;ωÞ and the approximate
joint spectrum of the system’s operators, the decreasing
local gap outside of the system for increasing εfs is a
manifestation of the increasing support of the chiral edge
resonances outside of the photonic crystal (i.e., decreasing
localization). Moreover, the appearance of extra zeros in
the local gap near the interface for increasing εfs is showing
that additional, topologically trivial modes are likely
appearing at the boundary of the photonic crystal, and
these would serve to undermine the transport properties of
the chiral edge resonance by allowing for backscattering
(see also Fig. S5 in the Supplemental Material [58]). In
contrast, if one instead approximates radiative outcoupling
as material absorption, the topological protection of the
chiral edge resonances is overestimated, as this approxi-
mation does not properly capture the salient physics that the
system’s chiral edge resonances are leaking out of its
boundaries [Fig. 4(b)] (still calculated for ω∈R to corre-
spond to the topological protection at an observable
frequency).
In conclusion, we have shown that gapless topological

heterostructures still exhibit bulk-boundary correspondence
despite the absence of a global band gap and have
demonstrated how to determine the protection of the
resulting interface-localized resonances in radiative envi-
ronments. Moreover, the spectral localizer reveals that
treating radiative outcoupling as material absorption over-
estimates a system’s topological protection. As the study of
topological photonics turns toward developing devices for
specific applications, the spectral localizer’s ability to
accurately predict topological robustness in radiative envi-
ronments may enable new photonic device designs that are
better protected against radiative outcoupling. Although we
have presented this classification approach in a photonic
systems, it is broadly applicable to topological materials in
general, and in the Supplemental Material we provide

examples of using the spectral localizer to classify topology
in gapless heterostructures formed from tight-binding
models [58].
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