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SUPPLEMENTARY NOTE 1: SYMMETRY VALIDATION

To demonstrate that the chiral symmetry is present
for our acoustic crystals, we first focus on the insulating
component of the system considered in the main text,
which was claimed to supply an accurate realization of
the SSH model. The physical model itself is shown in
Supplementary Figure 1d. Note that the acoustic chain
was terminated such that both ends are topologically
non-trivial.

We start by reporting the COMSOL-simulated reso-
nant spectra of SSH acoustic crystals generated with
different geometries of the grooved channels. As one
can see in Supplementary Figure 1a, the spectrum is
ungapped for a uniform channel, but a bulk spectral
gap opens as soon as the connecting channels are set
in an alternating geometry. Furthermore, with a good
degree, the bulk spectrum remains symmetric relative
to the middle of the bulk spectral gap (the small devia-
tions are less than 5% when compared with the overall
width of the bulk spectrum). In the same panel, one can
observe the expected edge resonant modes, whose ener-
gies are pinned with a high degree in the middle of the
bulk spectral gap. For our final experimental design, we
chose the geometry highlighted in red in Supplementary
Figure 1a, for which the COMSOL-simulated spectrum
display an exact chiral symmetry.

The above features, are semi-quantitatively repro-
duced experimentally, as reported in panels b and c
of Supplementary Figure 1. For these measurements,
the speaker and the microphone were inserted in the
same resonator via two holes open at the top and the
speaker’s frequency was swept from 3.5 kHz to 5.5 kHz.
The measurements were repeated for all resonators and
the collected data was assembled in the local density of
states plot shown in Supplementary Figure 1b. Panel c
supplies an alternative rendering of the same data. The
spectral gap as well as the expected edge modes can be
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clearly identified and are well aligned with the simu-
lation in panel a, up to a rigid shift of the spectra. The
COMSOL-simulated pressure fields of the edge resonant
modes are shown in Supplementary Figure 1d.

Further simulations of the resonant spectra are re-
ported in Supplementary Figure 2. These simulations
are for finite crystals with periodic boundary conditions
applied at the ends. Panel a corresponds to a metal-
lic crystal with tin = tout = 10mm and, as expected, the
spectrum has no band gaps. Panel b corresponds to the
SSH crystal with the geometry highlighted in Supple-
mentary Figure 1a and has a gapped spectrum. Panel c
corresponds to a metalized SSH chain, obtained by cou-
pling the two systems considered in panels a and b. In
this case the spectrum is again un-gapped. The reader
should pay attention to the almost perfect chiral symme-
try of the spectrum in all these three graphs.

SUPPLEMENTARY NOTE 2: THE LOCALIZER FOR
CLASS BDI, ONE-DIMENSIONAL SYSTEMS

The localizer is a mathematical object that can be built
from any set of d + 1 Hermitian matrices. For a d-
dimensional system, the most standard approach uses
the d position observables, X j for j ∈ 1, . . . , d, and the
Hamiltonian, H, to form the generic localizer

d∑
j=1

(X j − x jI) ⊗ Γ j + (H − EI) ⊗ Γd+1.

Here, the Γ matrices form a non-trivial Clifford repre-
sentation. There is no requirement that we use all of
the position observables and we often want to modify
the position observables to some degree. Most often,
we find that the natural units for position may be too
large or small, making the localizer unable to detect any
interesting information. In that case, we can apply the
localizer construction to (κX1, . . . , κXd,H) and obtain

d∑
j=1

(κX j − x jI) ⊗ Γ j + (H − EI) ⊗ Γd+1.

This function does not respect our initial units, so in
physics applications we re-scale again the scalars x j
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Supplementary Figure 1. Experimental mapping of the SSH model resonant spectrum. a COMSOL simulated SSH model
resonant spectrum. The red vertical box indicates tin = 15 mm and tout = 5 mm, used in the experiments. b Experimentally
measured local density of states, assembled from normalized microphone readings from the top of the block resonators. The
bright dispersive modes indicates the bulk and edge modes. c Collapse on the frequency axis of the intensity plot in b . The
spectral gap can be clearly identified and the edge modes show up in the gap marked as red asterisk. d Acoustic pressure field
distribution for the edge modes marked as red dot in panel a

look at what we call the full spectral localizer in a d-
dimensional system,

L(x1,...,xd,E)(X1, . . . ,Xd,H) =
d∑

j=1

κ(X j − x jI) ⊗ Γ j + (H − EI) ⊗ Γd+1. (1)

Now we specialize to one-dimensional systems in the
class BDI symmetry class. First, we make our choice of
the Γ matrices. These need to anticommute with each
other and each must be Hermitian and square to −I. The
simplest choice here is Γ1 = σx and Γ2 = σy, where σx,y
are the standard Pauli matrices, so we find

L(x,E)(X,H) =[
0 κ(X − xI) − i(H − EI)

κ(X − xI) + i(H − EI) 0

]
.

In class BDI we have a grading operator specifying the
chiral symmetry, with the assumptions HΠ = −ΠH and
XΠ = ΠX. The chiral operatorΠ is a unitary that squares
to I. In most examples,Π and X are real matrices and we
make those additional assumption, along with the stan-
dard assumption (for class BDI) that H is a real matrix. In

this symmetry class and dimension, it is easier to work
with a reduced matrix that is not always Hermitian,

L̃(x,E)(X,H) = κ(X − xI)Π+H − iEΠ.

This reduced localizer is Hermitian and real when E = 0
and that is where we shall focus. Indeed, it is

Hx = L̃(x,0)(X,H) = κ(X − xI)Π+H.

The becomes the model Hamiltonian for the perturbed
systems, see main text.

In this dimension and symmetry class, we call this the
localizer, or reduced localizer if we need to distinguish
from the full version. As expected, we can derive from
this localizer the topological invariant and the measure
of local topological protection.

Theorem 1. Suppose Π is unitary with Π2 = 1, and that X
and H are Hermitian matrices with HΠ = −ΠH and XΠ =
ΠX. For all real scalars x and E

σmin

(
L̃(x,E)(X,H)

)
= σmin

(
L(x,E)(X,H)

)
,

where σmin denotes smallest singular value.
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Supplementary Figure 2. Dispersion of the acoustic modes a Resonant spectrum of a periodic acoustic pattern. b Resonant
spectrum of a SSH acoustic pattern. c Resonant spectrum of a metalized SSH acoustic pattern.

Proof. For any square matrix A, a standard math trick is
to consider the larger matrix

M =
[

0 A†
A 0

]
that is always Hermitian. If we take a singular value
decomposition A = UDV†, with D diagonal and positive
and U and V unitary, we find

M =
[

V 0
0 U

] [
D 0
0 D

] [
0 V
U 0

]†
.

This tells us that the spectrum of M consists of pairs of
the form ±λ where λ is taken to be one of the singular
values of A. If we apply this to A = κ(X − xI) + i(H − EI)
we discover

σmin (κ(X − xI) + i(H − EI)) = σmin

(
L(x,E)(X,H)

)
.

Since multiplying a matrix on one side by a unitary does
not alter its singular values, we derive from this the
equality

σmin (κ(X − xI)Π+ i(H − EI)Π) = σmin

(
L(x,E)(X,H)

)
.

To finish the proof, we will show that κ(X− xI)Π+ i(H −
EI)Π is unitarily equivalent to κ(X− xI)Π+H − iEΠ. Let
ζ = 1

2 − i 1
2 and define Q = ζI + ζΠ. This is unitary since

QQ† =
(
ζI + ζΠ

) (
ζI + ζΠ

)
= |ζ|2I + ζ2Π+ ζ

2
Π+ |ζ|2I = I.

Since Π commutes with X and xI and EI, we see that Q

commutes with all of these as well. We compute

Q (HΠ) Q† =
(
ζI + ζΠ

)
(HΠ)

(
ζI + ζΠ

)
= |ζ|2HΠ+ ζ2HΠ2 + ζ

2
ΠHΠ+ |ζ|2ΠHΠ2

= |ζ|2HΠ+ ζ2H + ζ
2
ΠHΠ+ |ζ|2ΠH

= |ζ|2HΠ+ ζ2H − ζ
2
H − |ζ|2HΠ

= −iH,

which means

Q (κXΠ+ iHΠ − (κx + iE)Π) Q† = κXΠ+H − κxI − iEΠ.

Thus, in our situation, the reduced localizer, L̃, remains
real-symmetric at E = 0. Of course, it is only at E = 0
that we can extract topological information, as the usual
local index in only defined at E = 0 and for those x where
L(x,0)(X,H) is invertible. Then we look up the relevant
index formula in [1, § 4.2] and find the index is then

ν(x) =
1
2

sig
(
L̃(x,0)(X,H)

)
. (2)

The index can also be computed using the class AIII
formula, which uses the signature of (X − xI)Π + iHΠ.
This fails to remain a real matrix so is not preferred.

SUPPLEMENTARY NOTE 3: ALTERING THE
RE-CENTERED POSITION OPERATOR

In this study, it is necessary to attenuate the growth of
the κ(X j − x jI) ⊗ Γ j terms in Eq. (4) in the main text so



4

that each resonator’s fundamental axial mode maintains
a similar modal profile (to enable resonator couplings)
and a frequency that is separated from the remainder of
the spectrum. Thus, instead of using κ(X j − x jI) we are
using

κ tanh(α−1(X j − x jI))

which is applying to X j − x jI a function that is approxi-
mately linear near at zero. Since the localizer is, in fact,
local, this makes only a minor difference in the mathe-
matical analysis [2, 3].

If, after selecting (x1, · · · , xd), we truncate the system,
the eigenvalues near 0 of the localizer are not much ef-
fected if we truncate the systems in space, removing
parts of the system far from (x1, · · · , xd). The best bounds
on this can be derived from [3, §VI]. We can then apply
Weyl’s inequality on Hermitian matrices to the spectrum
of the locacalizer. In this way, we see that when ana-
lyzing the spectrum of the locazlizer close to 0 we are
justified in using the approximation

κ tanh(α−1(X j − x jI)) ≈ (κα−1)(X j − x jI)).

SUPPLEMENTARY NOTE 4: SECONDARY INDEX OF
THE SPECTRAL LOCALIZER

The local gap gives an indication of the strength of the
protection given by the associated topological index. By
the local gap, we mean

µ(x,0) = σmin

(
L̃(x,0)(X,H)

)
. (3)

The relevance is that one can prove [1, § 7] that it takes a
perturbation of H whose size (l2 matrix norm) is at least
equal to this local gap to make the local index change.
Thus, the positions (different choices of x), where the
local index changes, are more protected when the local
gaps on either side are large. The local index can only
change when the local gap goes to zero, and these points
correspond to localized states [1, 3].

In the case of systems with a well-defined bulk gap,
it is now established that the local index equals a more
traditional bulk index [4, 5]. This was anticipated when
the local index was defined. In this work we are push-
ing the localizer index into uncharted waters. What we
find is that there is substantial additional information in
the localizer’s spectrum beyond the gap at the center of
its spectrum. This was seen previously in the case of
semimetals by Schulz-Baldes and Stoiber [6].

In our case, we observe one eigenvalue moving (as we
move x) from close to the center of the spectrum to well
above, and another from close to the localizer’s spec-
trum’s center to well below. The proofs about topologi-
cal protection in [1] only depend on estimates on spectral
variation for Hermitian matrices so apply equally well to
gaps in the localizer spectrum that are not at zero. That

is, we can define an secondary index

νξ(x) =
1
2

sig
(
L̃(x,0)(X,H) − ξI

)
. (4)

whose strength can be inferred from

µξ,(x,0) = σmin

(
L̃(x,0)(X,H) − ξI

)
. (5)

We are looking for ξ where there are two values x1 and
x2 for x that lead to large secondary gaps and distinct
values of the secondary index. As long as |ξ| is not too
large we will still be able to conclude there is a state with
some localization and some topological protection.

Let us now be more precise on how small we require
|ξ| so that the secondary index µξ,(x,0) will be still mean-
ingful. A change in this index will mean that even after
adding disorder there will be a nearby x where

ξ ∈ σ
(
L̃(x,0)(X,H)

)
As we show above, this is equivalent to

ξ ∈ σ
(
L(x,0)(X,H)

)
and so we conclude

σmin(L(x,0)(X,H)) ≤ ξ.

From Proposions II.1 and II.4 of [3] we know there is a
state ψwith the following bounds on how it is localized
at position x and energy 0:√

κ2∆2
ψX + ∆2

ψH + κ2
(
Eψ[X] − x

)2
+ Eψ[H]2

≤

√
ξ2 + κ ∥[H,X]∥

Here we are using Eψ[O] and∆2
ψO to indicate expectation

and square of variance of an observable given this state.
When ξ = 0 we are getting localization error that might
be as bad as

√
κ ∥[H,X]∥, which is as we expect due to the

limitations imposed by various uncertainly principals. If
we restrict ourselves to secondary indices with

ξ ≤
√

3κ ∥[H,X]∥ (6)

then the proven bounds on localization errors will only
double.

SUPPLEMENTARY NOTE 5: BULK-INTERFACE
CORRESPONDENCE PRINCIPLE

A material or metamaterial is usually declared topo-
logical if it has a well defined bulk-interface correspon-
dence principle. The latter refers to ones ability to predict
the interface physics by examining topological data far-
away from the interface, hence, in the bulk of the two
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Supplementary Figure 3. Interface physics derived from the bulk spectral data of the spectral localizer. a The attractive
scenario, leading to a spectral flow that induces a change by two units of the spectral localizer index at the interface. b The
repulsive scenario, leaving the spectral index constant as one traverses the interface.

interfaced materials. The main claim of our work is that
this is indeed the case for the metallic system we inves-
tigate here, for which the bulk topological data can be
read off from the spectrum of the spectral localizer, as it
was done in Fig. 4 of the main text. In this section, we
elaborate on this statement and explain the spectral flow
seen in Fig. 4a of our main text.

We start by observing that our uncoupled metallic
chain from the SSH class can be seen as a critical phase
between two topological insulating SSH phases. For the
latter, we already know that, in the bulk, the spectral
localizer L̃x,0(X,H) displays a gapped spectrum and one
eigenvalue close to E = 0, either above or below, de-
pending on the SSH phase. Since the metal SSH is in
between the two distinct insulating SSH phases, we can
safely conclude that the spectral localizer for our decou-
pled metallic chain will display a gapped bulk spectrum
and one eigenvalue pinned exactly at E = 0. Supple-
mentary Figure 3 illustrates the typical bulk spectrum of
L̃x,0(X,H), when the metallic and the insulating chains
are decoupled. Upon coupling, the eigenvalues close to
E = 0 can either attract or repel and, in both cases, the

eigenvalue originally pinned at zero is robustly moved
away from E = 0. The direction in which this eigenvalue
moves is encoded in the index ν(xbulk). Indeed, for the
attractive case illustrated in Supplementary Figure 3a,
we have ν(x) = −1, while for the repulsive case ν(x) = 0.
Although we have not observed the latter case, both and
many more scenarios are in principle possible.

Now, in the presence of an interface, one can collect
the spectral data of the localizer far from the interface
and edges, for both left and right bulk regions, say at x±b .
With this data at hand, one can easily predict the spectral
flow of the localizer L̃x,0(X,H) as x is varied across the in-
terface. Indeed, starting from the uncoupled regime and
using the known behavior of the spectral localizer for
the insulating SSH phases, one draws the two crossing
bands bands seen in Supplementary Figure 3b,d (focus
on the solid lines). Then, using the bulk spectral data
together with the standard avoiding crossing principle,
one can easily derive the spectral flow of the localizer in
the coupled regime. This is illustrated by the doubled-
lines in Supplementary Figure 3b,d, for the attractive and
repulsive cases, respectively. Clearly, there is a strong re-
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semblance between the spectral flow from Supplemen-
tary Figure 3b and the spectral flow reported in Fig. 4 of
our main text. Hence, our qualitative analysis explains
the spectral flows observed in the COMSOL simulation
and experiment, whose origin can be now pinpointed
to the attraction between the relevant eigenvalues of the
spectral localizer.

There is a stark difference between the attractive and
repulsive cases reported in Supplementary Figure 3. In
the attractive case, the local spectral gapµ(x,0) closes twice
and, as already mentioned, each closing of µ(x,0) implies
the existence of a localized resonant mode. Thus, from
the spectral flow from Supplementary Figure 3b, one
can safely conclude the existence of two resonant modes
localized at the interface, in complete agreement with
the numerical and experimental observations discussed
in the main text. In contradistinction, from the spectral
flow Supplementary Figure 3d where repulsive case is
shown, one will conclude the absence of such modes.
Stepping back for a second, one realizes that, qualita-
tively, the spectral flows reported in Supplementary Fig-
ure 3 can be derived entirely from the local bulk indices
ν(x±b ) and, based on the possible resulting spectral flows,
the following principle emerges: There is a stark differ-
ence between the attractive and repulsive cases reported
in Supplementary Figure 3. In the attractive case, the
local spectral gap µ(x,0) closes twice and, as already men-
tioned, each closing of µ(x,0) implies the existence of a
localized resonant mode. Thus, from the spectral flow
from Supplementary Figure 3b, one can safely conclude
the existence of two resonant modes localized at the in-
terface, in complete agreement with the numerical and
experimental observations discussed in the main text. In
contradistinction, from the spectral flow Supplementary
Figure 3d where repulsive case is shown, one will con-
clude the absence of such modes. Stepping back for a
second, one realizes that, qualitatively, the spectral flows
reported in Supplementary Figure 3 can be derived en-
tirely from the local bulk indices ν(x±b ) and, based on the
possible resulting spectral flows, the following princi-
ple emerges: There is a stark difference between the at-
tractive and repulsive cases reported in Supplementary
Figure 3. In the attractive case, the local spectral gap
µ(x,0) closes twice and, as already mentioned, each clos-
ing of µ(x,0) implies the existence of a localized resonant
mode. Thus, from the spectral flow from Supplementary
Figure 3b, one can safely conclude the existence of two
resonant modes localized at the interface, in complete
agreement with the numerical and experimental obser-
vations discussed in the main text. In contradistinction,
from the spectral flow Supplementary Figure 3d where
repulsive case is shown, one will conclude the absence
of such modes. Stepping back for a second, one realizes
that, qualitatively, the spectral flows reported in Supple-
mentary Figure 3 can be derived entirely from the local
bulk indices ν(x±b ) and, based on the possible resulting
spectral flows, the following principle emerges: There
is a stark difference between the attractive and repul-

sive cases reported in Supplementary Figure 3. In the
attractive case, the local spectral gap µ(x,0) closes twice
and, as already mentioned, each closing of µ(x,0) implies
the existence of a localized resonant mode. Thus, from
the spectral flow from Supplementary Figure 3b, one
can safely conclude the existence of two resonant modes
localized at the interface, in complete agreement with
the numerical and experimental observations discussed
in the main text. In contradistinction, from the spectral
flow There is a stark difference between the attractive
and repulsive cases reported in Supplementary Figure 3.
In the attractive case, the local spectral gap µ(x,0) closes
twice and, as already mentioned, each closing ofµ(x,0) im-
plies the existence of a localized resonant mode. Thus,
from the spectral flow from Supplementary Figure 3b,
one can safely conclude the existence of two resonant
modes localized at the interface, in complete agreement
with the numerical and experimental observations dis-
cussed in the main text. In contradistinction, from the
spectral flow There is a stark difference between the at-
tractive and repulsive cases reported in Supplementary
Figure 3. In the attractive case, the local spectral gap
µ(x,0) closes twice and, as already mentioned, each clos-
ing of µ(x,0) implies the existence of a localized resonant
mode. Thus, from the spectral flow from Supplementary
Figure 3b, one can safely conclude the existence of two
resonant modes localized at the interface, in complete
agreement with the numerical and experimental obser-
vations discussed in the main text. In contradistinction,
from the spectral flow Supplementary Figure 3d where
repulsive case is shown, one will conclude the absence
of such modes. Stepping back for a second, one realizes
that, qualitatively, the spectral flows reported in There
is a stark difference between the attractive and repul-
sive cases reported in Supplementary Figure 3. In the
attractive case, the local spectral gap µ(x,0) closes twice
and, as already mentioned, each closing of µ(x,0) implies
the existence of a localized resonant mode. Thus, from
the spectral flow from Supplementary Figure 3b, one
can safely conclude the existence of two resonant modes
localized at the interface, in complete agreement with
the numerical and experimental observations discussed
in the main text. In contradistinction, from the spec-
tral flow There is a stark difference between the attrac-
tive and repulsive cases reported in Supplementary Fig-
ure 3. In the attractive case, the local spectral gap µ(x,0)
closes twice and, as already mentioned, each closing of
µ(x,0) implies the existence of a localized resonant mode.
Thus, from the spectral flow from Supplementary Fig-
ure 3b, one can safely conclude the existence of two
resonant modes localized at the interface, in complete
agreement with the numerical and experimental obser-
vations discussed in the main text. In contradistinction,
from the spectral flow Supplementary Figure 3d where
repulsive case is shown, one will conclude the absence
of such modes. Stepping back for a second, one real-
izes that, qualitatively, the spectral flows Supplementary
Figure 3 can be derived entirely from the local bulk in-
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dices ν(x±b ) and, based on the possible resulting spectral
flows, the following principle emerges:Supplementary
Figure 3d where repulsive case is shown, one will con-
clude the absence of such modes. Stepping back for a
second, one realizes that, qualitatively, the spectral flows
reported in Supplementary Figure 3 can be derived en-
tirely from the local bulk indices ν(x±b ) and, based on
the possible resulting spectral flows, the following prin-
ciple emerges:Supplementary Figure 3 can be derived
entirely from the local bulk indices ν(x±b ) and, based on
the possible resulting spectral flows, the following prin-
ciple emerges: 3d where repulsive case is shown, one will
conclude the absence of such modes. Stepping back for a
second, one realizes that, qualitatively, the spectral flows
reported in Supplementary Figure 3 can be derived en-
tirely from the local bulk indices ν(x±b ) and, based on the
possible resulting spectral flows, the following principle
emerges: 3d where repulsive case is shown, one will con-
clude the absence of such modes. Stepping back for a
second, one realizes that, qualitatively, the spectral flows
reported in Supplementary Figure 3 can be derived en-
tirely from the local bulk indices ν(x±b ) and, based on the
possible resulting spectral flows, the following principle
emerges:

# localized interface modes ≥ |ν(x+b ) − ν(x−b )|. (7)

The fact that we have an inequality instead of an equality
comes from the fact that the spectral flow may not always
be monotone as in Supplementary Figure 3b,d, but can
display oscillations, depending on how complicated the
interface potential is.

Finally, this argument gives us the means to predict
what will happen if a repulsive case is interfaced with
attractive case, in which case we have |ν(x+b ) − ν(x−b )| =
1, hence the expectation is that at least one localized
interface mode shows up. This scenario occurs at the
edges of our samples, as it will be revealed next.

SUPPLEMENTARY NOTE 6: REALIZATION IN
TIGHT-BINDING

Our acoustic metamaterial can be approximated using
a tight binding model, whose topology can be tuned by
changing the relative strengths of the intra- and inter-
unit cell couplings, tin and tout, respectively. The lattice
Hamiltonian for the two coupled chains can be written
as

H = − tin

∑
j

a†j,SSHb j,SSH − tout

∑
j

b†j,SSHa j+1,SSH

− tM

∑
j

(b†j,Ma j,M + a†j,Mb j+1,M)

− tc

∑
j

(a†j,SSHb j,M + b†j,SSHa j,M) + c.c. (8)
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Supplementary Figure 4. Evolution of the localizer’s spec-
trum as the inter-layer coupling is increased. a Localizer
spectrum at E = 0 for the SSH layer in isolation, with tin = 0.4
and tout = 1. b Similar, except for the metallic layer in isola-
tion, with tM = 1. c, d, e Localizer spectrum at E = 0 for the
two-layer system, with tin = 0.4, tout = 1, tM = 0.8, and tc = 0,
0.1, and 0.6.

Here, a j,SSH, b j,SSH (a†j,SSH, b†j,SSH) are the annihilation (cre-
ation) operators for the left and right sites of the jth unit
cell in the bipartite SSH chain. Similarly, b j,M, a j,M (b†j,M,
a†j,M) are the annihilation (creation) operators for the left
and right sites of the jth unit cell in the uniform gapless
chain, where the ordering of a and b to left and right has
been switched to emphasize the system’s chiral symme-
try. The coupling strength within the uniform layer is tM,
and the two layers are coupled together with strength tc.

The localizer spectra at E = 0, L̃(x,0)(X,H), for the SSH
and metallic layers separately are shown in Supplemen-
tary Figure 4a,b. Thus, the localizer spectrum for the
two layers together, but decoupled (tc = 0), can be seen
to the the superposition of these two spectra, Supple-
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mentary Figure 4c. Then, as the inter-layer coupling is
increased, we numerically observe the attraction within
the localizer’s spectrum, Supplementary Figure 4d,e.
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