
Supplementary Materials for
Observation of bound states in the continuum embedded in 

symmetry bandgaps

Alexander Cerjan*, Christina Jörg*, Sachin Vaidya, Shyam Augustine, Wladimir A. Benalcazar, 
Chia Wei Hsu, Georg von Freymann, Mikael C. Rechtsman

*Corresponding author. Email: awcerja@sandia.gov (A.C.); christinaijoerg@gmail.com (C.J.)

Published 22 December 2021, Sci. Adv. 7, eabk1117 (2021)
DOI: 10.1126/sciadv.abk1117

This PDF file includes:

Supplementary Text
Figs. S1 to S6
References



SI. BRAGG-DIFFRACTION ORDERS

A system consisting of a photonic crystal slab of finite thickness embedded in a homogeneous environment, such as
vacuum, possesses discrete translational symmetry in the two-dimensional plane of the photonic crystal,

ε(r) = ε(r + l1a1 + l2a2), (S1)

where a1,2 are the lattice vectors of the photonic crystal slab and l1,2 ∈ Z. As any resonance of the photonic crystal
slab must satisfy Maxwell’s wave equation, and Maxwell’s wave equation commutes with all of the possible discrete
translational symmetry operations in Eq. (S1), the resonances of the slab can be constructed to be eigenfunctions of
both the wave equation and the symmetry operators simultaneously. This means that the resonances of the slab can
be categorized based on their in-plane wavevector, k‖ = (kx, ky), which are the eigenvalues of the discrete translation
operators and are uniquely defined up to the reciprocal lattice vectors, bi · aj = 2πδi,j . In other words, resonances of
the slab at k‖ are equivalent to, and have the same frequencies as, those found at k‖ +

∑
i=1,2mibi, where mi ∈ Z.

However, for a radiative channel to exist in the surrounding homogeneous environment, where there is continuous
translational symmetry, the propagating light must satisfy the dispersion relation in that medium,

n2ω2

c2
= k2x + k2y + k2z , (S2)

where n is the refractive index of the environment and ω is the light’s frequency. In particular, this means that for
light in the slab at a given frequency to radiate, it must possess a frequency and in-plane wavevector that yield a real
out-of-plane momentum, kz,

kz =

√√√√√n2ω2

c2
−

k‖ +
∑
i=1,2

mibi

2

. (S3)

Note, that although resonances of the photonic crystal slab at k‖ +
∑
i=1,2mibi are equivalent, these correspond to

inequivalent radiative channels in free-space. Equation (S3) thus defines a series of frequency cutoffs for how many
radiative channels are available for a given resonance to radiate to.

• If n2ω2/c2 < k2
‖, i.e. mi = 0, the resonance is below the light line and is a bound state, perfectly confined by

total internal reflection.

• If n2ω2/c2 > k2
‖, but n2ω2/c2 < (k‖ +

∑
imibi)

2 for mi 6= 0, only a pair of radiative channels are available,

both have the same kz, but have orthogonal polarizations. In this case, the resonance of the photonic crystal
slab is said to be below the first Bragg-diffraction limit.

• If n2ω2/c2 > (k‖ +
∑
imibi)

2 for some set of (m1,m2) 6= (0, 0), there are additional pairs of radiative channels
available with distinct wavevectors and the resonance is above the first Bragg-diffraction limit, though it is
below some subsequent Bragg-diffraction limit.

These different regions are schematically illustrated in Fig. 1 in the main text.

SII. PROOF – NO SYMMETRY-PROTECTED BICS ABOVE THE BRAGG-DIFFRACTION LIMIT

In this section, we will provide a detailed proof of the claim that:

Theorem For a two-dimensional photonic system with finite thickness embedded in a homogeneous three-
dimensional environment, symmetry-protected BICs can only be found below the first Bragg-diffraction limit
at Γ.

The question of whether or not a symmetry-protected BIC can be found in a photonic crystal slab amounts to
the question, ‘For every choice of k‖, do the available radiative channels span all of the possible symmetries of
the slab’s resonances at that wavevector?’ Or in other words, ‘At every k‖, do the radiative channels exhaust the
irreducible representations of the little group, G(k‖)?’ If there are irreducible representations present in G(k‖)
which are unavailable in the radiative channels, then any slab resonance obeying that combination of symmetries



will necessarily be a BIC at that k‖. Thus, to prove that symmetry-protected BICs cannot exist above the Bragg-
diffraction limit, we must show that above this limit the radiative channels always span the irreducible representations
of G(k‖), regardless of the specific symmetries of the system.

In two dimensions, there are 17 possible space groups (i.e. the ‘wallpaper groups’) which consist of different combi-
nations of three classes of symmetry operations, rotations, reflections, and glides, which form the point group of the
structure, along with the translational symmetry of the system. As such, the in-plane symmetry of the photonic crystal
slab must be one of these 17 space groups. Here, we are omitting any consideration of the symmetry of the system in
the perpendicular direction for two reasons. First, many photonic crystal slabs and metasurfaces are constructed on a
substrate with a different refractive index from the material above the structure, and such systems are not symmetric
in the perpendicular direction. Second, even for suspended structures, or those which use an index-matching solution
to restore reflection symmetry about the xy-plane (σz), it is not possible to use this out-of-plane reflection symmetry
to construct a BIC in the slab. This is because the total possible symmetries of the photonic crystal slab of a σz sym-
metric system are simply the direct product of this single out-of-plane symmetry with the in-plane symmetries, but
the available radiative channels above and below the slab are degenerate, so linear combinations of these degenerate
channels span all of the available out-of-plane symmetries of the slab.

Here, we adopt the notation from Ref. 52 from the main text, in which we represent symmetry operations in the
form {β|B}, such that

{β|B}r = βr + B, (S4)

where β is a 3× 3 matrix (or for two-dimensional systems 2× 2 matrix) which rotates or reflects r, while B denotes
a possible translation. When operating on a function, this acts as

{β|B}ψ(r) = ψ(β−1r− β−1B). (S5)

In this nomenclature, the identity operation is {ε|0}, and we use {Cn|0} to denote counter-clockwise rotation by 2π/n
about the z-axis, {σ|0} to denote a reflection about a specified plane, and {σ|τ 6= 0} to denote a glide operation.

Finally, we remind the reader that the slab resonances at a given k‖ may have lower symmetry than the point
group of the photonic crystal slab itself. The symmetries, {β|B}, which the slab resonances at k‖ must obey (i.e.,
those symmetry operations which constitute the little group G(k‖)) are those for which

βk‖ = k‖ +
∑
i=1,2

mibi, (S6)

for some choice of integers m1,2, such that βk‖ is equivalent to k‖ up to a reciprocal lattice vector. This equivalence
is denoted as

βk‖
.
= k‖. (S7)

A. Basis for radiative channels

To study the available symmetries of the radiative channels of the environment propagating away from the slab in
the +z direction, we choose a basis of these plane wave channels based on their three distinguishing characteristics,
|nz, nd, s/p〉, which correspond to:

• nz ∈ [0, Nz − 1] is the Bragg-diffraction order the channel is in. This value is ordered in decreasing kz, and is
indexed from 0, such that nz = 0 is below the first Bragg-diffraction limit and corresponds to ‘specular radiation’
with m1,2 = 0 in Eq. (S3). The upper bound Nz is the number of unique values of real kz for all m1,2 given ω
and k‖ of the slab resonance.
Note – for k‖ along the boundary of the Brillouin zone, there are no frequencies which are both above the
light line and below the first Bragg-diffraction limit, as kz for m1,2 = 0 is always degenerate with kz for m1,2

corresponding to the neighboring Brillouin zone, see Fig. 1 in the main text. In this case, there is no specular
radiation, and nz ∈ [1, Nz − 1].

• nd ∈ [0, Nd − 1] labels the in-plane wavevector of the channel in the environment, k‖ +
∑
i=1,2mibi. The total

number of possible in-plane wavevectors for a given Bragg-diffraction order, Nd, is equal to the number of unique
pairs (m1,m2) which yield the same kz via Eq. (S3).
Note – For k‖ 6= Γ, or k‖ = Γ and nz 6= 0, Nd must be an integer multiple of the number of rotational symmetry
operators which leave k‖ invariant.



Proof of note – This follows from the definition of the little group of k‖. If {Cn|0} ∈ G(k‖), then Cnk‖
.
= k‖.

But given the stated assumptions (k‖ 6= Γ, or k‖ = Γ and nz 6= 0), then Cnk‖ 6= k‖ except for Cn = C1, so there
must be some other pair (m1,m2) which yields an equivalent in-plane wavevector with the same kz, as rotation
about the z axis cannot change the momentum in the z direction. As different rotation operations will result in
different in-plane wavevectors, these new pairs generated (m1,m2) from the rotation operations Cn 6= Cn′ must
be unique.

• s/p denotes the polarization of the channel, where s corresponds to the radiation channel whose electric field
vector is parallel to the photonic crystal slab. For nz = 0 at k‖ = Γ, this choice is arbitrary, but the two
polarizations are chosen to be orthogonal.

An example of this choice of basis for specular radiation, nz = 0 and the first Bragg-diffraction order, nz = 1, is
shown in Fig. S1 for a photonic crystal slab whose unit cell is C4v symmetric at k‖ = Γ.
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FIG. S1. Choice of basis for the radiative channels. Here, the basis, |nz, nd, s/p〉, is shown for a free-space environment
at k‖ = Γ that surrounds a photonic crystal slab whose unit cell is C4v symmetric. (a) Members of the basis corresponding
to specular radiation, nz = 0. Here, the purple arrow denotes the wavevector of the radiative channel, k, and the green arrow
denotes the polarization of the electric field. (b) Members of the basis corresponding to the first Bragg-diffraction order, nz = 1.
The four unique choices of (m1,m2) which constitute this set of in-plane wavevectors correspond to (±1, 0) and (0,±1).

Using this basis, it is easy to verify that the representation matrices, D({β|B}), of the symmetry operations
{β|B} ∈ G(k‖) are block-diagonal,

D({β|B}) =

D
(nz=0)({β|B}) 0 · · ·

0 D(nz=1)({β|B}) · · ·
...

...
. . .

 , (S8)

in which each block corresponds to the representation of that symmetry operation for a different Bragg-diffraction
order of the system. This property is a consequence of the fact that none of the in-plane symmetry operations can
change the out-of-plane wavevector. As such, we can treat the representations of the different Bragg-diffraction orders
separately, and the total symmetries spanned by all of the Bragg-diffraction orders at a given k‖ will be the direct
sum of those symmetries spanned by each order.

B. Structure of the rotation representation matrices

For any non-trivial rotation operation, {Cn6=1|0}, which leaves Cn6=1k‖
.
= k‖, the effect of this operation on the

chosen basis only results in non-diagonal elements of the representation of this rotation, D(nz≥1)({Cn6=1|0}), for any
non-zero Bragg-diffraction order. This is a consequence of the fact that for any such radiative channel, |nz ≥ 1, nd, s/p〉,
a rotation operation necessarily changes the in-plane component of its wavevector, changing nd. An example of the
action of these rotations on the chosen basis is shown in Fig. S2.

As such, the character, χ({β|B}) = Tr[D({β|B})], of any non-trivial rotation for any non-zero Bragg-diffraction
order is zero,

χ(nz≥1)({Cn6=1|0}) = 0. (S9)
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FIG. S2. Effects of rotation operations. Example of a {C4|0} rotation operation applied to some basis elements of the
system from Fig. S1. For this system, D({C4|0})|1, 0, s/p〉 = |1, 1, s/p〉.

C. Structure of the reflection representation matrices

There are two possible scenarios that can arise when a reflection operation, {σ|0}, which leaves σk‖
.
= k‖, acts on

one of the radiative channel basis functions. If the basis function’s wavevector, k, does not lie in the reflection plane,
then the reflection operation maps that basis function to a different member of the radiative basis. However, if k lies
in the reflection plane then D({σ|0})|nz, nd, s/p〉 ∝ |nz, nd, s/p〉. These two possibilities are shown in Fig. S3.

� out of reflection plane � in reflection plane

|��,��,�⟩
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FIG. S3. Effects of reflection operations. Examples of reflection operations acting on radiative channel basis functions
where the channel’s wavevector, k, either lies out of the reflection plane (a), or in the reflection plane (b).

Due to the environment being homogeneous, the frequencies and out-of-plane wavevectors for s and p polarized
light are degenerate. Thus, as can be seen in Fig. S3b, when the wavevector of the radiation channel lies in the
reflection plane,

D({σ|0})|nz, nd, s〉 = −|nz, nd, s〉, (S10)

D({σ|0})|nz, nd, p〉 = +|nz, nd, p〉. (S11)

As such, regardless of the particular reflection operation, while the individual diagonal elements of D({σ|0}) may be
non-zero, the character is necessarily zero,

χ(nz≥1)({σ|0}) = 0. (S12)

as s and p polarized channels must appear in the radiative basis in pairs.

D. Structure of the glide representation matrices

As a reminder, glide operations are the combination of a reflection operation with translation by a vector which
cannot be expressed as an integer multiple of lattice vectors, and can be expressed as the product of these two
operations, {σ|τ} = {ε|τ}{σ|0}. Given that we already know the action of the reflection operation on the radiation
basis from the previous section, we must understand the effect of translation on the radiative basis. As the radiative
basis consists of plane wave propagating away from the photonic crystal slab, we know the functional form of these
states far away from the crystal slab,

|nz, nd, s/p〉 = es/pe
ik·r−iωt, (S13)



where es/p is a unit vector pointing in the direction of the polarization of the electric field. Thus, using Eq. (S5), we
can calculate the effect of translation on this basis element,

D({ε|τ})|nz, nd, s/p〉 = es/pe
ik·(r−τ )−iωt,

= e−ik·τ |nz, nd, s/p〉. (S14)

As can be seen, this translation effects the two polarizations of radiation channels identically, and thus again, while
the individual diagonal elements of D({σ|τ}) may be non-zero, the character is necessarily zero,

χ(nz≥1)({σ|τ}) = 0, (S15)

regardless of the specifics of the particular glide operation.

E. Completing the proof

Over the previous subsections, we have proven that the characters for all of the representations of the symmetry
operations, {β|B}, for which βk‖

.
= k‖ are zero, except for that of the identity operation,

χ(nz≥1)({ε|0}) = 2Nd, (S16)

χ(nz≥1)({β|B}) = 0, otherwise. (S17)

Thus, upon using the orthogonality of characters of irreducible representations (see Ref. 52) to decompose the repre-
sentations of the non-zero Bragg-diffraction orders of the radiative channels, we find that

q(α) =
1

g

∑
{β|B}∈G(k‖)

χ(α)({β|B})∗χ(nz≥1)({β|B})

=
1

g
χ(α)({ε|0})∗χ(nz≥1)({ε|0})

=
2Nd
g
χ(α)({ε|0})∗. (S18)

Here, α denotes an irreducible representation of G(k‖), χ(α)({β|B}) is the character of that irreducible representation
for {β|B} ∈ G(k‖), g is the number of elements in G(k‖), and q(α) is the number of times that irreducible representation
appears in the representation of the environment’s radiative channels. As the character of the identity operation for
every irreducible representation is its dimension, χ(α)({ε|0})∗ ≥ 1, and so

q(α) > 0 ∀α. (S19)

Thus, for any non-zero Bragg-diffraction order of a homogeneous radiative environment surrounding a photonic
crystal slab, the radiative channels completely span the possible symmetries of the modes of the photonic crystal
slab. As such, one cannot find symmetry-protected bound states in the continuum above the Bragg-diffraction limit.
In particular, this means that there cannot be symmetry-protected BICs at the high-symmetry points along the
boundary of the Brillouin zone, as the boundary of the Brillouin zone is always above the first Bragg-diffraction limit.

SIII. PROOF – NO SYMMETRY-PROTECTED BICS BELOW BRAGG-DIFFRACTION LIMIT
EXCEPT AT k‖ = Γ

For the 17 possible space groups of two-dimensional systems, the only possible symmetry classes which can be
found on the interior of the Brillouin zone away from k‖ = Γ is even/odd symmetry with respect to a reflection
(or glide) operation. In other words, except for Γ (and the boundary of the Brillouin zone which is above the first
Bragg-diffraction limit), the maximum number of elements which can be found in G(k‖) is 2, along high-symmetry
lines for which k‖ lies in the plane of a reflection or glide symmetry. In this case, the point group of G(k‖) is C1h, and
resonances of the photonic crystal slab at this wavevector will either be even or odd with respect to this reflection or
glide symmetry operation. However, one can quickly verify that the specular radiation channels in the surrounding
environment (those with nz = 0), span the two possible symmetries of the slab’s resonances, as the s polarized channel
will be odd about the reflection operation, while the p polarized channel will be even, see Fig. S3b.

Thus, below the first Bragg-diffraction limit for k‖ 6= Γ, there are no symmetry-protected BICs, as the specular
radiation channels exhaust the possible symmetries of the resonances of the slab.



SIV. TRUNCATION OF THE ENVIRONMENT

A. Truncation in z

In this section, we numerically justify the truncation of the infinite environment to an environmental layer a single
unit cell thick on each side of the slab. In the absence of an infinite rectangular woodpile environment surrounding
the slab, and with the addition of the period-doubled grating, the symmetry-protected resonance of the slab can
evanescently couple to the grating layers and radiate into the surrounding air, as the resonance along the Γ–X
line is not a symmetry-protected BIC when the radiative environment is free space. In this picture, the layers of
the rectangular woodpile act as a barrier without any states the slab resonance can couple to, which increases the
distance between the slab and the grating. This lack of states with the correct symmetry in the woodpile photonic
crystal means that the coupling between the slab resonance and the grating is strictly evanescent, and thus decreases
exponentially with distance.

Numerically, we can confirm that the resonance frequency and modal profile remain essentially unchanged when
the environment is truncated from being infinite, to being comprised of 5 layers of photonic crystal on each side of
the slab, see Fig. S4. Moreover, the frequency and modal profile remain nearly fixed as the environment is reduced
to being only a single layer of the photonic crystal on each side, with this state still possessing a Q-factor > 106.
However, both of these features dramatically change if the environment is removed entirely. Then, the slab resonance
can couple directly to the grating, changing its frequency and modal profile, and significantly reducing its Q-factor.

Thus, the truncation of the environment to a single unit cell thick on either side of the slab is justified, and does
not alter the essential physics of the system. In contrast, completely removing the environment would significantly
change the properties of the slab resonances.
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FIG. S4. Truncation in the out-of-plane direction. (a) Frequencies (left triangles) and quality factors (right triangles) of
the photonic slab resonance as the environment is truncated from from being 5 unit cells thick on each side to vanishing. This
system is the same as the one considered in Fig. 3 of the main text, and includes the period-doubled grating. (b) Plot of the
Ez and Hz field profiles in the yz-plane through this truncation process. The gray regions denote the dielectric regions, and
the yellow boundaries of these plots denote the regions of the perfectly-matched layers absorbing boundary condition.
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FIG. S5. Truncation in a direction perpendicular to the slab plane. These schematics are to be seen as unit cells
that are repeated periodically in the x-direction. (a) Homogeneous slab extends beyond the truncated environment. (b)
Homogeneous slab is terminated at a photonic crystal slab. The photonic crystal slab is designed to possess a complete in-plane
photonic bandgap at the frequency of the symmetry bandgap.

B. Truncation perpendicular to the slab plane

Truncation of the system in a direction perpendicular to the slab plane, such as x or y, can result in a variety of
outcomes depending upon the details of the truncation. For this subsection, we will assume that the environment,
where it exists, remains infinite in z.

If only the environment is truncated in a direction perpendicular to the slab plane, but the slab itself continues
so that there is an area where the slab is not surrounded by the environment (Fig. S5a), this will yield an effective
decay rate to the slab states, turning the BICs into finite-Q resonances. Without the environment, the slab states
can couple to the surrounding free-space radiative channels, and thus leak. However, the finite-Q resonances will still
essentially form a line, as the slab remains infinite in the in-plane directions.

If the environment is truncated in an in-plane direction and the slab is also truncated with an in-plane mirror, say
by adding an in-plane photonic crystal slab decoration with a complete bandgap where the environment has been
removed (Fig. S5b), then the BICs will become finite-Q but still remain high-Q, as the solid slab is still completely
surrounded by the environment, while propagation outside of this region is prohibited by the in-plane mirror at the
boundary due to the photonic crystal slab. Then:

• If the truncation results in a large region of solid slab surrounded by a environment and the line of BICs exists
along the remaining infinite in-plane direction, the line of BICs will be nearly preserved. An example such setup
is shown in Fig. S5b, where the system retains discrete translational symmetry in x indefinitely (and thus kx
remains a well-defined wave vector component), but the homogeneous slab is finite in y. Here, the line of BICs
previously along Y–M will remain a line of high-Q resonances if the truncation length in y is sufficiently large
such that the standing waves which form in y with the nearly correct symmetry still fall within the original
symmetry bandgap of the infinite environment.

• However, if the in-plane truncation results in only a finite width of slab with the environmental cladding and this
finite truncation is in the direction of the line of BICs, this will discretize the line of BICs into a set of high-Q
resonances at points with spacing δk = 2π/L, where L is the width of the solid slab in the finite direction. This
is similar to the effect discussed in Ref. 53 of the main text. An example of such a system is also shown in Fig.
S5b, where we now focus on the line of BICs in the non-truncated system along the X–M high symmetry line.
When the system is truncated in y, ky is no longer a well-defined wave vector component, so the line of BICs
will discretize into a set of points that remain high-Q.

SV. BROKEN SYMMETRY EXPERIMENT

To experimentally demonstrate that the BIC is protected by the symmetry of the system, we purposefully break
this symmetry in the same manner as is shown in Fig. 2f,g of the main text. As can be seen in Fig. S6, for a system
with broken symmetry that is otherwise similar to the system used to observe Figs. 3e and 4 in the main text (see



Materials and Methods section), the resonance now has a finite linewidth at φ = 0◦ which can be observed using our
experimental methods.
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FIG. S6. Experimentally observed transmission spectrum for a symmetry-broken structure. Here, we use ∆y =
0.25a at θ = 15◦. See Fig. 2f,g in the main text for the definition of ∆y. The purple arrow points to the location of the
former-BIC resonance at φ = 0◦.
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