
Supplemental Material: An operator-based approach to topological photonics

Alexander Cerjan1, ∗ and Terry A. Loring2, †

1Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA

(Dated: September 7, 2022)

MATRIX SQUARE ROOTS AND SYMMETRIES

In the main text we relied on the fact that if a pos-
itive semi-definite matrix M satisfies a symmetry then
so must M

1
2 and M− 1

2 . Indeed, this claim is also true
for bounded operators on a Hilbert space. Note that in
operator theory [1], the term positive is more common
than positive semi-definite. We will prove things for the
finite matrix case, where eigenvalues are guaranteed and
the spectral theorem is simpler to state.

If M is positive semidefinite, then by the spectral the-
orem we can factor M as

M = UDU† (S1)

with U unitary and D diagonal with the diagonal ele-
ments λj = Dj,j all in the closed, finite interval [0, ∥D∥].
Given a positive semidefinite matrix M there will be

a unique positive semidefinite matrix N so that N2 =
M . Of all the many square roots of M , it is only N
that is anointed with the notation M

1
2 . A good way to

understand N is via Eq. (S1). Given that factorization,
one quickly finds (see [2, Ex. 2.16.]

M
1
2 = UD1U

† (S2)

where D1 is again diagonal, but with jth diagonal ele-
ment

√
λj . This way of calculating the square root makes

it hard to track the effect of a symmetry, so we look to
one of the many alternate means of calculating M by
hand. We are not discussing numerical methods of com-
puting matrix square roots that respect symmetries, but
that is of interest [3, § IV].

Given a sequence of polynomials pn, if we select this
so that we have good convergence pn(λ) →

√
λ then we

will have

M
1
2 = lim

n→∞
pn(M). (S3)

To be technical, we are applying the Weierstrass Approxi-
mation Theorem [2, § 6.2.1] which guarantees a sequence
of polynomials that uniformly converge on the interval
[0, ∥M∥]. The advantage of this approach is that with
a polynomial p(λ) =

∑
anλ

n we need not use Eq. (S2).
Instead, we can work with the more direct formula

p(M) =
∑

anM
n. (S4)
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We get now to our first result. It is not new, but in the
math literature one will generally not see any antiunitary
operators, and will instead find results about elements of
real C∗-algebras [4]. As such, it is simpler to provide
direct proofs rather than to translate between the two
pictures.

Lemma 1. Suppose U : Cn → Cn is a unitary or an-
tiunitary operator. Suppose also that M is a positive
semidefinite n-by-n matrix that we treat as a linear op-
erator on Cn. If U commutes with M then U commutes
with M

1
2 .

Proof. We are assuming U ◦M = M ◦ U and it immedi-
ately follows that

U ◦M ◦ · · · ◦M = M ◦ U ◦ · · · ◦M
...

= M ◦ · · · ◦M ◦ U

which says U ◦Mn = Mn ◦ U . For the case of unitary U ,
everything proceeds as expected,

U ◦
(∑

anM
n
)
=

(∑
anM

n
)
◦ U . (S5)

Unfortunately, for antiunitary U we find

U ◦
(∑

anM
n
)
=

(∑
anM

n
)
◦ U . (S6)

However, fortunately, we are able to select the pn to
have only real coefficients, by the the original theorem
of Weierstrass [5], so we find U ◦ pn(M) = pn(M) ◦ U
for both the unitary and antiunitary cases. Finally, both
unitary and antiunitary operators are continuous, so we
pass to the limit and are done by Eq. (S3)

To be fair, we are jumping over some complications
when we say we are passing to the limit. What we need
is at least point-wise convergence for

lim
n→∞

(U ◦ pn(M)) = U ◦
(
lim
n→∞

pn(M)
)

and

lim
n→∞

(pn(M) ◦ U) =
(
lim
n→∞

pn(M)
)
◦ U .

In the unitary case these are standard results. The an-
tiunitary versions have simple, but not short, proofs. At
the core of these proofs is the fact that the antiunitary
property

⟨U(v),U(w)⟩ = ⟨v,w⟩



2

implies that U preserves distances:

∥U(x)− U(y)∥ = ∥x− y∥.

Lemma 2. Suppose U : Cn → Cn is a unitary or an-
tiunitary operator. Suppose also that M is a positive
semidefinite n-by-n matrix. If U anti-commutes with M
then U anti-commutes with M

1
2 .

Proof. The proof is essentially as before, except that we
can only prove that U ◦Mn = −Mn ◦ U for odd values
of n. However, we can approximate the odd function

λ 7→

{√
λ for λ ≥ 0

−
√
−λ for λ ≤ 0

(S7)

on the larger interval [−∥M∥, ∥M∥] by polynomials, and
this means we can zero out all the coefficients in even
positions. The proof then proceeds as before.

Lemma 3. Suppose U : Cn → Cn is a unitary or an-
tiunitary operator. Suppose also that M is an invertible
n-by-n matrix. If U commutes with M then U commutes
with M−1.

Proof.

M ◦ U = U ◦M ◦ U ◦M−1 (S8)

M−1 ◦M ◦ U ◦M−1 = M−1 ◦ U ◦M ◦M−1 (S9)

which simplifies to

U ◦M−1 = M−1 ◦ U (S10)

The proof is easily adapted to prove the following.

Lemma 4. Suppose U : Cn → Cn is a unitary or an-
tiunitary operator. Suppose also that M is an invertible
n-by-n matrix. If U anti-commutes with M then U anti-
commutes with M−1.
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