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Over the last few years, crystalline topology has been used in photonic crystals to realize edge- and
corner-localized states that enhance light-matter interactions for potential device applications. However, the
band-theoretic approaches currently used to classify bulk topological crystalline phases cannot predict the
existence, localization, or spectral isolation of any resulting boundary-localized modes. While interfaces
between materials in different crystalline phases must have topological states at some energy, these states
need not appear within the band gap, and thus may not be useful for applications. Here, we derive a class of
local markers for identifying material topology due to crystalline symmetries, as well as a corresponding
measure of topological protection. As our real-space-based approach is inherently local, it immediately
reveals the existence and robustness of topological boundary-localized states, yielding a predictive
framework for designing topological crystalline heterostructures. Beyond enabling the optimization of
device geometries, we anticipate that our framework will also provide a route forward to deriving local
markers for other classes of topology that are reliant upon spatial symmetries.
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The discovery of crystalline-symmetry protected topo-
logical phases, such as obstructed atomic limits [1], fragile
topology [2–5], and higher-order topology [6–9], has
played a prominent role in the development of artificial
topological materials. Indeed, one of the primary features
of such materials is that their geometry can be carefully
tailored during fabrication, allowing for exquisite control
over a system’s spatial symmetries [10–12]. In photonic
crystals, the edge- and corner-localized modes that can
appear at the interfaces between structures in different
topological crystalline phases have been used to realize a
wide variety of useful phenomena, such as lasers [13–18],
single photon routing [19–23], and structures for enhancing
harmonic generation [24–27]. Crystalline topology can also
be observed in acoustic systems [28–37], where it can
protect Fano resonances [38] and enable robust analog
signal processing [39].
However, the existing theoretical framework for identi-

fying crystalline topology poses a substantial challenge for
the design of many types of artificial materials seeking to
leverage these phases’ boundary-localized phenomena. At
present, this classification framework is rooted in band
theory, and diagnoses a system’s topology through the
calculation of elementary band representations [1,4,40] and
symmetry indicators [41–49], or Wilson loops over a
system’s Brillouin zone [50–52]. Yet, the interface between
gapped materials that are in different crystalline-symmetry
protected topological phases is not guaranteed to exhibit a
localized state at the center of their common band gap, or
even within this gap at all [53]. Instead, after designing

such a topological heterostructure, the existence, localiza-
tion, and spectral isolation of any boundary states must be
confirmed through additional analysis, such as large-
volume simulations of the interface. Although it is possible
to combine crystalline symmetries with chiral or particle-
hole symmetry to protect the boundary-localized states’
frequencies to be at midgap [53,54], many artificial
materials, including photonic crystals, cannot realize these
additional symmetries. Thus, the most salient properties of
many artificial crystalline topological materials for enhanc-
ing interactions cannot, in general, be predicted or pro-
tected by known band-theoretic approaches.
Here, we introduce a class of local markers for identify-

ing the topology of materials due to their crystalline
symmetries. These markers are applicable to both first-
order and higher-order topology, and changes in them
directly reveal a system’s topological boundary-localized
states. Moreover, associated with every such marker is a
local measure of topological protection, providing a quan-
titative assessment for the robustness of each boundary-
localized state. We show how this framework can be
applied to realistic photonic crystals to identify topological
corner-localized states that are nearly degenerate with
surrounding edge modes. Furthermore, by calculating the
local measure of protection for disordered versions of this
system, we demonstrate that a topological state’s robust-
ness can be independent of its spectral separation from the
bulk bands, in contrast to the standard assumption that such
a state’s robustness is determined by this spectral separa-
tion. Looking forward, our framework may both enable the
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prediction of devices predicated on this class of topology
while inherently accounting for finite system size effects,
and yield insights for deriving local markers for other
classes of topology that are reliant upon spatial symmetries,
such as those found in moiré systems.
To provide a specific system that exemplifies the

difficulties faced in developing artificial topological het-
erostructures based on crystalline symmetries, we consider
a 2D photonic structure consisting of a triangular lattice
whose unit cells are decorated with expanded or contracted
hexagons of high-dielectric rods [55] that are arranged to
form an interface with a 120° corner between the two
decoration choices [Fig. 1(a)]. The transverse magnetic
(TM) modes of these two different decoration choices have
been previously shown to be in different topological
crystalline phases [24,27,55–57], and can exhibit topologi-
cal corner-localized states within their common band gap
(Fig. 1). However, as photonic crystals do not generally
possess chiral or particle-hole symmetry, these corner-
localized states do not appear at the center of the shared
gap (without fine-tuning). Thus, even if the topological

distinction between the two domains is protected by the
bulk band gap, this gap does not protect the localization of
the corner states, which could become degenerate with the
bulk bands for weaker perturbation strengths than are
necessary for a bulk topological phase transition (usually
resulting in the delocalization of the corner states [58–60]).
A framework designed to identify the topological inter-

face-localized states stemming from the system’s crystal-
line symmetries requires two components: an invariant that
distinguishes topological phases, and an argument showing
that shifts in the invariant guarantee the appearance of
boundary-localized states. Here, we build such a frame-
work by starting with the spectral localizer [61–68],
which is known to be connected to topology arising from
local discrete symmetries (i.e., the Altland-Zirnbauer
classes [69–71]). The spectral localizer is a composite
operator that combines the eigenvalue problems of a finite
system’s Hamiltonian ðH − E1Þϕ ¼ 0 and position oper-
ators ðX − x1Þϕ ¼ 0 using a Clifford representation. For a
system with a single relevant position operator, the spectral
localizer can be written as

Lðx;EÞðX;HÞ ¼ ðH − E1Þ ⊗ σx þ κðX − x1Þ ⊗ σy

¼
 

0 ðH − E1Þ − iκðX − x1Þ
ðH − E1Þ þ iκðX − x1Þ 0

!
; ð1Þ

where the Pauli matrices σx and σy are used as the Clifford representation. Here, κ > 0 is a tuning coefficient to ensure
consistent units and comparable contributions of all summands, and 1 is the identity. The approximate scale of κ is set by the
bulk band gap g and the length of the finite system l in the relevant dimension, κ ≈ 2g=l, see Supplemental Material Sec. SIII
[72]. In cases where the matrix arguments are implied by their context, they will be omitted, e.g., Lðx;EÞ ¼ Lðx;EÞðX;HÞ.

FIG. 1. (a) Diagram of a 2D photonic structure with a 120° corner between crystals formed from expanded (purple) and contracted
(blue) hexagonal clusters, bounded by a perfect electric conductor. The high dielectric rods ε ¼ 11.7 embedded in air have radius
r ¼ a=9 and are offset from being a honeycomb lattice by �0.06a, where a is the lattice constant. (b) Bulk TM band structure for the
expanded (purple) and contracted (blue) photonic crystals. (c) Density of states for the finite system in (a). (d) Local gap ðμð0;ω2ÞÞ1=2 in
units of 2πc=a and local index ζ

Ry

ω2 calculated using κ ¼ 0.01ð2πcÞ2=a3. Note, ðμð0;ω2ÞÞ1=2 has units of frequency, enabling direct
comparison against the system’s band structure. In (b)–(d) the shaded regions demarcate those frequencies where bulk states exist.
(e) Local density of states (LDOS) at the frequency of the local gap closing and real part of the Ez field for the nearest mode of the
system. Orange corresponds to ω ¼ 0.515ð2πc=aÞ, and red to ω ¼ 0.480ð2πc=aÞ.
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Unlike standard eigenvalue equations, where the eigen-
values are determined by their respective operators, the
position x and energy E are inputs in the spectral localizer,
and its spectrum quantifies whether the system exhibits a
state approximately localized at ðx; EÞ [83], or how large of
a system perturbation δH is needed to obtain such a state. In
particular, if the minimum distance over all of the eigen-
values of Lðx;EÞ to 0,

μðx;EÞðX;HÞ ¼ minðjspec½Lðx;EÞðX;HÞ�jÞ; ð2Þ

is small relative to k½H; κX�k, such an approximately
localized state exists [83]. Here, spec½L� denotes the
spectrum of L. Conversely, if μðx;EÞ is large, a perturbation
with norm kδHk⪆ μðx;EÞðX;HÞ is required for such a state
to be found, i.e., for μðx;EÞðX;H þ δHÞ ¼ 0. As such, μðx;EÞ
can be heuristically understood as a “local band gap.”
As crystalline symmetries are independent of a system’s

local discrete symmetries, a crystalline invariant should be
applicable to any system regardless of the presence or
absence of such discrete symmetries. Thus, a local crys-
talline topological marker should be given by the signature
of an invertible Hermitian matrix, i.e., its number of
positive eigenvalues minus its number of negative ones.
This is analogous to how, for example, the 0th Chern
number of a 0D system is given by the partitioning of its
Hamiltonian’s eigenvalues about a chosen band gap; the
relevant invertible Hermitian matrix here isH − Eg1, where
Eg is the band gap’s central energy [84]. (In contrast,
topology originating from phenomena like parity switches
are not related to a matrix’s signature, but can only manifest
in the presence of specific local discrete symmetries.)
However, even though Lðx;EÞ is Hermitian, its block off-
diagonal structure guarantees that its eigenvalues are
always symmetric about 0 for any choice of x and E.
Instead, we seek to remove the duplication in spec½Lðx;EÞ�

using the system’s crystalline symmetry, and then define an
invariant based on this reduced spectrum. In particular, a
local crystalline topological marker can be constructed
from Lðx;EÞ if the system has a unitary crystalline symmetry
S that satisfies S2 ¼ 1, HS ¼ SH, and XS ¼ −SX.
Multiplying the off-diagonal blocks in Eq. (1) by S at
x ¼ 0 yields the symmetry-reduced spectral localizer

L̃S
EðX;HÞ ¼ ðH − E1þ iκXÞS; ð3Þ

(A related operator can be constructed for 1D chiral
symmetric systems [60,85].) Remarkably, L̃S

E ¼ ðL̃S
EÞ† is

Hermitian due to the above symmetry relations. Even
though L̃S

E is only built from a single block of Lð0;EÞ, it
contains all of the essential spectral information in Lð0;EÞ, as

λ∈ spec½L̃S
EðX;HÞ� ⇒ �λ∈ spec½Lð0;EÞðX;HÞ�; ð4Þ

see Supplemental Material Sec. SI [72]. Hence, L̃S
E has

only “half of the eigenvalues” of Lð0;EÞ, and these eigen-
values need not lie symmetrically around 0. Thus, a local
crystalline topological marker can be constructed as

ζSEðX;HÞ ¼ 1

2
sig½L̃S

EðX;HÞ�; ð5Þ

where sig½L̃S
E� is the matrix’s signature. For a system with

an even or odd number of states, ζSE is integer or
half-integer, but the changes in ζSE are always integer
valued (and define the spectral flow, which provides a
rigorous generalization to the thermodynamic limit, see
Supplemental Material Sec. SI [72]). Note that ζSE is only
defined when L̃S

E possesses a spectral gap about 0, that is,
μð0;EÞ ≠ 0. Moreover, one can prove that pairs ðX;HÞ
describing finite systems with the same ζSE can be path
connected to each other while preserving S and maintain-
ing μð0;EÞ > 0, while this is impossible for systems with
different ζSE, see Supplemental Material Sec. SII [72].
The local marker ζSE is an indicator for topological

boundary states. Specifically, ζSE can only change its value
at some energy Ec if 0∈ spec½L̃S

Ec
� so that one of the

eigenvalues can switch its sign. But, due to Eq. (4), this
requires that μð0;EcÞ ¼ 0. In turn, a vanishing local gap
guarantees the existence of an eigenvalue of H near Ec,
whose corresponding eigenstate is centered at x ¼ 0

[72,83]. If the local gap closing occurs within a bulk band
gap, it must correspond to a boundary-localized state.
Furthermore, μð0;EÞ ≠ 0 provides a measure of topological
protection, as a perturbation must close the local gap for the
topology to change. Thus, altogether, ζSE both distinguishes
crystalline topological phases with respect to S and
changes in its value guarantee that the system possesses
a topological state.
To demonstrate that ζSE is a useful invariant for predicting

the behavior of artificial topological materials, we apply the
spectral localizer framework to the heterostructure consid-
ered in Fig. 1(a). We start with the second-order differential
equation form of Maxwell’s time-harmonic equations for
TM modes

∇2EzðxÞ ¼ −ω2εðxÞEzðxÞ; ð6Þ

in which EzðxÞ is the z component of the electromagnetic
field, ω is the frequency, εðxÞ > 0 is the spatially depen-
dent dielectric distribution, and the magnetic permeability
is assumed to be the identity. Using standard finite-differ-
ence methods to approximate the Laplacian, we obtain the
pair of finite matrices ∇2 → W and M, such that M can be
diagonal with ½M�j;j ¼ εðxjÞ, where xj ¼ ðxj; yjÞ is the jth
vertex in the discretization. Thus, Eq. (6) can be written as
the Hermitian eigenvalue problem
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ð−M−1=2WM−1=2 − ω21Þψ ¼ 0; ð7Þ

where ψ ¼ M1=2Ez. Note that if ½M;S� ¼ 0, then
½M−1=2;S� ¼ 0. The discretization of the system also
defines its position operators, which can also be chosen
to be diagonal; for the 2D system considered in Fig. 1,
½X�j;j ¼ xj and ½Y�j;j ¼ yj. Overall, this formulation of
Maxwell’s equations and the subsequent choice of discre-
tization are chosen to preserve a dielectric distribution’s
crystalline symmetries.
The heterostructure with a 120° corner in its interface

that is considered in Fig. 1 possesses a reflection symmetry
Ry about the y ¼ 0 axis. Thus, as HRy ¼ RyH, YRy ¼
−RyY, and R2

y ¼ 1, this symmetry can be used to define a
Ry-symmetrized spectral localizer and associated local
marker as

L̃
Ry

ω2 ¼ ðH − ω21þ iκYÞRy; ζ
Ry

ω2 ¼ 1

2
sig
�
L̃
Ry

ω2

�
; ð8Þ

where H ¼ −M−1=2WM−1=2, and the local gap at y ¼ 0 is

given by μð0;ω2Þ ¼ minðjspec½L̃Ry

ω2 �jÞ. Although the system

in Fig. 1(a) is 2D, L̃
Ry

ω2 and the associated local index and
gap only use one of its two position operators (similar to
real-space formulations of other weak invariants [66,67]).

This effectively forces ζ
Ry

ω2 and μð0;ω2Þ to focus on the
system’s reflection center.
As can be seen in Figs. 1(d) and 1(e), the corner

heterostructure exhibits two topological corner-localized
states within its bulk band gap. Although these states are
difficult to uniquely identify in the system’s density of
states (DOS) due to the surrounding, nearly degenerate
edge-localized modes [Figs. 1(c) and S2], the corner states
can be immediately identified using the system’s local gap,
as they are energetically close to the local gap closing
within the heterostructure’s bulk band gap and do not come
in reflection symmetric pairs (see Supplemental Material
Sec. SVII [72]). Moreover, at both of these closings the
local topological index changes, proving that both corner
states are topological with respect to Ry. Finally, the large
local gaps on either side of these corner states indicate that
they are both robust against fabrication imperfections.
Quantitatively similar results appear for a range of κ, see
Supplemental Material Sec. SIII [72]. Note that although
there are many local index changes within the spectral
extent of the bulk bands, the tiny local gaps within these
regions indicate that these topological phases have vanish-
ing protection.
In contrast to the assumption that crystalline topological

states closer to the center of the common bulk band gap are
better protected against disorder, the local gap [Fig. 1(d)]
reveals that the higher-frequency corner-localized state in
this system has more topological protection than the lower-
frequency corner state despite being closer in frequency to

the bulk bands. In general, a perturbation δH with strength
kδHk⪆ μð0;ω2Þ is necessary to change the system’s local
topology, but this criterion is not sufficient for photonic
systems—an arbitrary H þ δH cannot generally be decom-
posed into a physically meaningful combination of a local
permittivity and Laplacian, per Eq. (7). Instead, the
increased protection of the higher-frequency state can be
seen by finding the dielectric defect strength necessary to
annihilate each of the corner states. In Fig. 2 we consider
two different perturbations that respectRy, each tailored to
affect one corner mode by changing the permittivity of the
rod(s) the state has its maximum support on [Fig. 1(e)]. For
the lower-frequency corner state’s perturbation [Figs. 2(a)
and 2(c)], a change in the permittivity of δε ¼ 1.17 is
needed to annihilate the topological state by combining it
with a state from the lower-frequency bulk bands. In
comparison, the necessary perturbation to annihilate the
higher-frequency corner state is δε ¼ −4.28 [Figs. 2(b)
and 2(d)], despite a similar overlap of the corner-localized
state and the perturbation (see Supplemental Material
Sec. SIV [72]). These results provide evidence that the
local gap yields an experimentally relevant hierarchy of
protection for a photonic system’s topological states.
The local crystalline topological marker ζSE is also

applicable to first-order topology. Section SV in the
Supplemental Material provides an example of classifying
edge states using this framework [72].
Having proved that ζSE is a useful local marker indicating

the existence of topological boundary states and that
μð0;EÞ is its associated measure of protection, we now
provide a physical interpretation for changes in its value.
Consider the eigenvalue lE of L̃S

E closest to zero and its

FIG. 2. (a),(b) Zoomed in diagram of the perturbed rods (red) in
the photonic crystal corner heterostructure from Fig. 1(a) tailored
to the lower-frequency (a) and higher-frequency (b) corner states.
(c) Local gap ðμð0;ω2ÞÞð1=2Þ in units of 2πc=a and local index ζ

Ry

ω2

calculated using κ ¼ 0.01ð2πcÞ2=a3 for the lower-frequency
perturbation with δε ¼ εred − ε ¼ 1.17. (d) Similar to (c), except
using the higher-frequency perturbation with δε ¼ −4.28. The
shaded regions in (c),(d) demarcate those frequencies within the
bulk bands.
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corresponding eigenvector ϕE, and note the square of the
symmetry-reduced spectral localizer,

ðL̃S
EÞ2 ¼ ðH − E1Þ2 − iκ½H;X� þ κ2X2: ð9Þ

For systems with only local couplings, k½H;X�k is propor-
tional to the lattice constant times the system’s energy
scale, and as such is of order 1 in the system’s natural units.
Thus, as generally κ is small (which guarantees the
robustness of the spectral localizer to different choices
of κ [63]), to leading order one finds that

l2EϕE ≈ ðH − E1Þ2ϕE: ð10Þ

Now, let Ec be an energy where the local gap closes
μð0;EcÞ ¼ 0, such that lEc

¼ 0. If the spectrum of H is
non-degenerate (possibly through the addition of a small
amount of symmetry-preserving disorder), one finds
ϕEc

≈ ψb and Ec ≈ Eb, where Hψb ¼ Ebψb. Thus, in the
vicinity of the local gap closing where there is only a single
relevant eigenstate of the Hamiltonian, one finds that

lE ≈ sbððEb − EÞ þ iκψ†
bXψbÞ; ð11Þ

where Sψb ¼ sbψb with sb ¼ �1. But, as X anti-commutes
with S, ψ†

bXψb ¼ 0. Altogether, for E ≈ Ec,

lE ≈ −sbðE − EcÞ; ð12Þ

i.e., the eigenvalue of L̃S
E closest to zero is linear near a local

gap closing, and the change�1 of ζSE acrossEc is opposite to
the symmetry eigenvalue of the Hamiltonian’s correspond-
ing topological state. [See Supplemental Material Sec. SI
[72] for a more detailed derivation of Eq. (12).] The
prediction of Eq. (12) is realized in the system from
Fig. 1; simulations show that for the corner-localized state

near ω ¼ 0.480ð2πc=aÞ, the index ζRy

ω2 increases byþ1 (for
increasing ω) when the local gap closes, and the corre-
sponding eigenstate of the system is odd (sb ¼ −1) with
respect to Ry. The opposite behavior is observed for the

corner-localized state near ω ¼ 0.515ð2πc=aÞ, with ζ
Ry

ω2

decreasing as the corner-localized eigenstate is even with
respect to Ry. Thus, ζSE is identifying atomic limits with
different numbers of states that are either even or odd with
respect to S.
In conclusion, we have introduced a class of local

crystalline topological markers ζSE and their associated
measure of topological protection rooted in the spectral
localizer. Unlike traditional theories of crystalline topology
that only yield ZN invariants [43,53,86–88], the local
markers derived here are Z invariants that can identify
multiple topological states per band gap beyond those
predicted by a system’s fractional filling anomaly (see
Supplemental Material Sec. SVIII [72]). Thus, further work

is required to connect these two frameworks by accounting
for the different phenomena each is sensitive to. More
immediately, our operator-based framework should be
useful for the design of materials seeking to leverage
crystalline topology to enhance interactions by optimizing
over the predicted measure of a state’s topological robust-
ness. Furthermore, by providing a physically motivated
derivation of our local markers, our work may aid future
theoretical studies in finding local markers for other classes
of topology, and in particular the topology seen in moiré
systems.
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