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I. DERIVATION OF THE 3D WEYL EXCEPTIONAL RING HAMILTONIAN FROM THE

WAVEGUIDE FLOQUET HAMILTONIAN

As discussed in the main text, the steady-state diffraction of light at a specific frequency propagating through a
waveguide array is described by the paraxial approximation to Maxwell’s equations. For a given electric field amplitude
with a fixed linear polarization, E(x, y, z)e−iωt, the slowly-varying envelope, ψ(x, y, z), is

E(x, y, z) = ψ(x, y, z)eik0z, (S1)

in which k0 = n0ω/c, and n0 is the index of refraction of the background material in the system, and the propagation
is assumed to be predominantly along the z axis. In the limit that the back scattering in the z direction due to the
waveguides is negligible, ψ(x, y, z) satisfies the 2D Schrödinger equation,

i
∂ψ

∂z
≈ Ĥψ(x, y, z) =

[

− 1

2k0
∇2

⊥ − ω

c
δn(x, y, z)

]

ψ(x, y, z), (S2)

where ∇2
⊥ is the Laplacian in the transverse directions, x, y, and δn = n − n0 is the shift in the refractive index

which defines the waveguides. As the helical waveguides are periodic in z, with period Z, such that δn(x, y, z +Z) =
δn(x, y, z), Eq. (S2) is a Floquet problem whose eigenstates satisfy

ψ(x, y, z + Z) = eiβZψ(x, y, z), (S3)

ĤFψ = βψ, (S4)

in which ĤF is the Floquet Hamiltonian, and β is the Floquet quasi-energy. The Floquet Hamiltonian is defined
using the z-evolution operator over a single period,

eiĤFZ = T ei
∫

Z

0
Ĥ(x,y,z)dz, (S5)

while the Floquet quasi-energy corresponds to a slight shift in the wavevector along the axis of the waveguides,

β = kz − k0. (S6)

Usually, when solving for the band structure of a photonic crystal, the allowed frequencies are the eigenvalues of
an equation dependent upon the wavevector components of the system, kx, ky, kz. However, in re-writing Maxwell’s
equations using the paraxial approximation in Eq. (S2), we have effectively exchanged the wavevector component
along the propagation axis, kz , for the frequency, ω, so that the exact momentum along the waveguides’ axis is now
determined by the three degrees of freedom kx, ky, ω. Thus, when ĤF is non-Hermitian, the propagation constant will
develop an imaginary component, β ∈ C, corresponding to the amplification, Im[β] < 0, or attenuation, Im[β] > 0, of
the corresponding eigenstate, so that the total evolution of the electric field can be written as

E(x, y, z; t) = u(x, y, z)ei(k0+β)z−iωt, (S7)

with ω ∈ R, and in terms of the periodic function u(x, y, z) = e−iβzψ(x, y, z). This amplification or attenuation can
instead be considered as an imaginary component of the frequency using the mode-dependent group velocity in the
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propagation direction, v
(n)
g,z , as ∆kz = −∆ω/v

(n)
g,z [1], so that the total evolution of the electric field can also be written

as,

E(x, y, z; t) = u(x, y, z)ei(k0+β̃)z−iω̃t, (S8)

with β̃ = Re[β], and ω̃ = ω − iv
(n)
g,z Im[β].

The bipartite square waveguide lattice we consider here can be tuned to a topological transition at frequency ω0,
as demonstrated in the main text in Fig. 3. Thus, to lowest order in the frequency detuning, δω = ω − ω0, in
the neighbourhood of the topological transition, the Floquet Hamiltonian is described by a non-Hermitian Dirac
Hamiltonian,

ĤF ≈ vd(δkxσ̂x + δkyσ̂y) + b
n0δω

c
σ̂z + iτ̃ σ̂1 −∆ετ̃ σ̂1, (S9)

in which τ̃ is a real number that parameterizes the loss added to the system through the breaks in one sublattice of
the system, ∆ε is the effective shift in the on-site energy due to the reduction in the average index of refraction from
the breaks in the waveguides per unit loss added by the breaks (hence, ∆ετ̃ is the total decrease in the on-site energy

for a given break length), σ̂1 = (1/2)(σ̂z + Î) is the Pauli matrix for one sublattice of the system, and vd, b are real
constants. Note that given the definition of the Floquet Hamiltonian, Eqs. (S4)-(S5), and that Im[β] > 0 corresponds
to attenuation in the system, τ̃ > 0 also corresponds to attenuation. When τ̃ = 0, this Floquet Hamiltonian becomes
the traditional Hermitian Dirac Hamiltonian with an effective mass determined by the frequency, with the topological
transition occurring at δω = 0. But, when τ̃ > 0, the system develops both an on-site loss and on-site energy shift in
one of the two sublattices.
To prove that this Floquet Hamiltonian is equivalent to the non-Hermitian Weyl Hamiltonian in Eq. (1) of the main

text, we must re-arrange Eq. (S9) into a form where δkz appears as a parameter and that generates the eigenvalues
δω. Noting that

β = δkz −
n0

c
δω, (S10)

where δkz = kz − n0ω0/c, we can rewrite Eq. (S4) using Eq. (S9) as

[

vd(δkxσ̂x + δkyσ̂y)− δkz Î +
τ̃

2
(i−∆ε)(σ̂z + Î)

]

ψ = −(Î + bσ̂z)
n0δω

c
ψ. (S11)

Equation (S11) has the form of a generalized eigenvalue problem. To convert it to an ordinary eigenvalue problem,
we seek to factorize the operator on the right-hand side of the equation and rescale the eigenstate vectors as,

ϕ =Ŵψ, (S12)

Ŵ2 ≡− n0

c
(Î + bσ̂z), (S13)

which leads to

Ĥ ′ϕ = δωϕ, (S14)

Ĥ ′ = Ŵ−1

[

vd(δkxσ̂x + δky σ̂y)− δkz Î +
τ̃

2
(i −∆ε)(σ̂z + Î)

]

Ŵ−1. (S15)

Assuming that |b| < 1, one can directly verify that the appropriate re-scaling operators are

Ŵ = i
(n0

2c
(1−

√

1− b2)
)1/2

Î + i
(n0

2c
(1 +

√

1− b2)
)1/2

σ̂z , (S16)

Ŵ−1 =
c

n0

√
1− b2

[

i
(n0

2c
(1−

√

1− b2)
)1/2

Î − i
(n0

2c
(1 +

√

1− b2)
)1/2

σ̂z

]

, (S17)

the same as was previously reported for the Hermitian version of this system [2]. Equation (S15) can now be rewritten
as

Ĥ ′ =
cvd

n0(1 − b2)
(δkxσ̂x + δkyσ̂y) +

c

n0(1− b2)
δkz(Î − |b|σ̂z)−

τ̃ (i−∆ε)

2

(

c(1− |b|)
n0(1− b2)

)

[

σ̂z + Î
]

, (S18)



which can be simplified by defining

v⊥ =
cvd

n0

√
1− b2

(S19)

vz =
c

n0(1− b2)
(S20)

τ =
τ̃ (1− |b|)

2
(S21)

to

Ĥ ′ = v⊥(δkxσ̂x + δkyσ̂y) + vzδkz(Î − |b|σ̂z)− vzτ(i −∆ε)(σ̂z + Î). (S22)

This is the non-Hermitian Weyl Hamiltonian. Written in this manner, it is clear that ∆ετσ̂z is a Hermitian pertur-
bation to the system which has the effect of changing the location of the topological transition in kz, while terms
proportional to Î amount to an overall shift in the spectrum of the system and do not play a role in the formation
of either the Weyl point (when τ = 0) or the Weyl exceptional ring (when τ > 0). As such, these terms have been
omitted from Eq. (1) of the main text, although the effect of ∆ετσ̂z is discussed in the context of Fig. 3 of the main
text, and in more detail in Sec. VI of the supplementary information.
Finally, to justify that |b| < 1 for this system, we provide an analysis of its order of magnitude. Recall from Eq.

(S9) that b scales the effective mass in the Dirac Hamiltonian. The unbroken Hermitian system exhibits a Weyl point
at λWP = 1609nm. If the system is detuned to λ2 = 1564nm, the isofrequency surfaces split at kx = ky = 0, with
∆kzZ ≈ π/4, with ∆kz being the splitting between the upper and lower bands. This split is due to the effective mass
in the system, i.e. bn0δω/c = π/8Z. Using the identities k0 = n0ω/c = 2π/λ, and δω = (2πc/n0)(λ

−1
2 − λ−1

WP), one
can estimate b = 3.5 · 10−5.
Throughout our analysis, we have focused only on those modes which are localized within, and propagate along,

the single mode waveguides which comprise the helical waveguide array. When breaks are added to the waveguides,
these waveguide modes couple to ‘unbound’ modes of the system that exist predominantly in the space between the
waveguides. Since we only monitor the light localized to the bound modes of the waveguides at the output facet,
we observe an effective loss rate for the broken waveguides. When solving for the three-dimensional band structure
ω(kx, ky, kz), this effective loss results in presence of the WER, despite the fact that the perturbation associated with
the breaks between waveguides is purely dielectric and requires no absorptive medium.

II. PROOF OF QUANTIZED BERRY CHARGE ON A WEYL EXCEPTIONAL RING

In this section, we give an analytic proof that the non-Hermitian Weyl exceptional ring Hamiltonian of the form in
Eq. (1) of the main text possess a real, quantized Berry charge. This proof is provided for completeness of this work,
but its existence has been previously reported [3, 4]. To begin, we rewrite Eq. (1) as

Ĥ = k̃xσ̂x + k̃yσ̂y + k̃zσ̂z + iτ σ̂z (S23)

in which we have defined k̃x = v⊥δkx, k̃y = v⊥δky, k̃z = −vz|b|δkz, and −vzτ → τ for simplicity, as well as dropped

the two terms proportional to Î as these terms only result in a global shift of the eigenvalues of the system and do
not effect the eigenstates. The eigenvalues of Eq. (S23) can be quickly calculated as

λ± = ±
√

k̃2x + k̃2y + k̃2z − τ2 + 2iτ k̃z ≡ ±λ0. (S24)

As Eq. (S23) is a non-Hermitian Hamiltonian, it possesses left and right eigenvectors,

Ĥ |ψR
±〉 = λ±|ψR

±〉, (S25)

〈ψL
±|Ĥ = λ±〈ψL

±|, (S26)

which can be calculated as

|ψR
±(k)〉 =

(

1

N±

)

(

k̃x − ik̃y,−(k̃z + iτ − λ±)
)T

, (S27)

〈ψL
±(k)| =

(

1

N±

)

(

k̃x + ik̃y,−(k̃z + iτ − λ±)
)

, (S28)



in which the normalization factor N± is

N2
±(k) = 2(k̃2x + k̃2y + (k̃z + iτ)2)∓ 2(k̃z + iτ)λ0, (S29)

and ensures that 〈ψL
i |ψR

j 〉 = δij . Note that there is no simple relationship between the left and right eigenvalues of
the Weyl exceptional ring Hamiltonian, which is a consequence of the fact that there is no simple symmetry (such as
PT) present in systems which exhibit Weyl exceptional rings.
To calculate the Berry charge of the Weyl exceptional ring Hamiltonian, one first must decide on the proper non-

Hermitian definitions of the Berry connection, A(k), and curvature, Ω(k). In principle, there are four possibilities
for these definitions stemming from different combinations of the left and right eigenvectors,

A
(L/R),(L/R)
± (k) = i〈ψ(L/R)

± (k)|∇k|ψ(L/R)
± (k)〉. (S30)

Locally, each of these are different quantities. However, it can be shown that upon defining the Berry curvature, and
integrating the curvature on a closed surface, that the resulting topological charge is invariant to different choices of
definition of Eq. (S30) [5]. Thus, here we adopt the choice of ALR

± = i〈ψL
±|∇k|ψR

±〉, from which the Berry curvature
is defined as

ΩLR
± (k) = ∇k ×ALR

± (k), (S31)

from which the Berry charge can be calculated as

γ± =
1

2π

∫

S

ΩLR
± · dS. (S32)

Finally, it will be convenient to choose the surface of integration in Eq. (S32) as a sphere with radius k̃R, so we

define k̃x = k̃r sin(θ) cos(φ), k̃y = k̃r sin(θ) sin(φ), k̃z = k̃r cos(θ), and k̃r =
√

k̃2x + k̃2y + k̃2z .

A. Berry charge when |τ | < k̃R

For |τ | < k̃R, the Weyl exceptional ring is entirely contained within the surface of integration, and the two eigenstates
as defined in Eqs. (S27) and (S28) remain distinct. As such, using the definitions in Eqs. (S30) and (S31), the Berry
connection and curvature can be calculated for the Weyl exceptional ring Hamiltonian, Eq. (S23), as

ALR
± (k) =

−k̃yx̂
N2

±

+
k̃xŷ

N2
±

, (S33)

and

ΩLR
± (k) = ∓ k̃

2λ30
∓ iτ ẑ

2λ30
. (S34)

Using the Berry curvature and Eq. (S32), the Berry charge can then be solved for as

γ± =
1

2π

∫

S

r̂ ·ΩLR
± (k)k̃2R sin(θ)dθdφ, (S35)

which leads to the pair of integrals,

γ± = ∓ k̃
2
R

2






k̃R

∫ π

0

sin(θ)dθ
(

k̃2R − τ2 + 2iτ k̃R cos(θ)
)3/2

+ iτ

∫ π

0

cos(θ) sin(θ)dθ
(

k̃2R − τ2 + 2iτ k̃R cos(θ)
)3/2






. (S36)

These integrals can be evaluated analytically, resulting in

γ± = ∓ k̃
2
R

2







i

τ





1
√

k̃2R − τ2 + 2iτ k̃Ru





∣

∣

∣

∣

∣

∣

u=1

u=−1

− i

2τ k̃2R





2(k̃2R − τ2) + 2iτ k̃Ru
√

k̃2R − τ2 + 2iτ k̃Ru





∣

∣

∣

∣

∣

∣

u=1

u=−1






, (S37)

from which some additional algebra results in the final solution

γ± = ∓1 |τ | < k̃R. (S38)

This proves that when the surface of integration contains the entire WER, the Berry charge of the WER is real and
quantized.



B. Berry charge when |τ | > k̃R

When |τ | > k̃R, the surface of integration does not contain the WER, and instead passes through the WER. This
presents an additional challenge in calculating the Berry charge, as within the exceptional ring, which is comprised
entirely of branch points, the upper and lower bands can be seen to be two different portions of the same Riemann
surface. Thus, we must be careful when calculating the Berry charge to correctly follow a single band of the system.
By viewing the Riemann surface for this system, one can see that the correct definition of the right eigenstates within
the WER is

|ψR
1 〉 = Θ(k̃z)|ψR

+〉+Θ(−k̃z)|ψR
−〉, (S39)

|ψR
2 〉 = Θ(k̃z)|ψR

−〉+Θ(−k̃z)|ψR
+〉, (S40)

in which Θ(k) is the Heaviside function. Using a similar definition for the left eigenstates, the Berry connection is
found to be

ALR
(1,2)(k) = Θ(k̃z)A

LR
± (k) + Θ(−k̃z)ALR

∓ (k), (S41)

with ALR
± (k) given by Eq. (S33). The Berry curvature can then be calculated as

ΩLR
(1,2)(k) = ∓Θ(k̃z)

(

k̃

2λ30
+
iτ ẑ

2λ30

)

±Θ(−k̃z)
(

k̃

2λ30
+
iτ ẑ

2λ30

)

− δ(k̃z)

(

k̃xx̂+ k̃yŷ

N2
±

)

+ δ(k̃z)

(

k̃xx̂+ k̃yŷ

N2
∓

)

. (S42)

Finally, the Berry charge can be evaluated, which yields a similar set of integrals as was found in the previous case,
except with extra boundary terms at the k̃z = 0 plane. Upon working through the algebra, one finds that

γLR
(1,2) = 0 |τ | > k̃R. (S43)

This completes the proof that the Berry charge on the Weyl exceptional ring remains real, quantized, and equal to
that of the underlying Hermitian Weyl Hamiltonian. Although here we have only considered non-Hermiticity added
with σ̂z , a more general proof can be constructed which lifts this restriction [4].

III. SIMULATION PARAMETERS

The simulations presented in this work are performed using the beam propagation method (also called the split-
step method) [6, 7], which directly evolves the electric field envelope ψ(x, y, z) in the propagation direction (z) in
accordance with Eq. (S2). Band structures shown in Figs. 2 and 3 are propagated for a single helix pitch length Z,
and then calculated using the cut and project method [8] (see the supplemental material of that work). The index
variation of the waveguides is modelled as a hyper-Gaussian,

∆n(x, y, z) = ∆n0e
[(x2/σ2

x)+(y2/σ2

y)]
3

, (S44)

for which the lengths of the axes of the waveguide’s elliptical cross-section are σx = 3.2µm and σy = 4.9µm, the
background index of refraction is n0 = 1.473, and the index shift of the waveguides is ∆n0 = 2.6 · 10−3. For ease of
reproduction we repeat the remainder of the system parameters here. The transverse lattice constant is a = 29

√
2µm.

The pitch of the helical waveguides is Z = 1 cm. The rotation radius of the helical waveguides is R = 4µm.
As breaks are added to the system to induce the formation of the Weyl exceptional ring, there are 16 breaks added

per helix pitch, equally spaced, each with length dbreak, where ∆n(x, y, z) = 0. Thus, for a system with dbreak = 60µm,
a total length of 960µm has been removed per Z. These breaks are arranged such that the locations in z of closest
approach between neighbouring waveguides are always unbroken, and bisect the distance between adjacent breaks.

IV. LOSS AS A FUNCTION OF BREAK LENGTH

To demonstrate that these simulation parameters yield results which agree with the experiment, we compare the
total transmission as a function of break length for isolated, straight waveguides. As can be seen in Fig. S1, the chosen
simulation parameters faithfully reproduce the experimental results.
Moreover, we reiterate here that it is appropriate to ignore the effects of Fresnel reflection at the interfaces between

the waveguides and the breaks. As the index contrast between the waveguides and the breaks is ∆n0 = 2.6 · 10−3,



the Fresnel reflection coefficient per interface is ∼ 10−6. Thus, for 2 · 16 interfaces per cm, the total intensity loss due
to backwards reflection is ∼ 10−4 per cm. This is of a similar order to the bending losses from the rotation of the
helical waveguides, but is much less than the losses incurred due to even the shortest gap lengths, which are > 10−2

per cm, as can be seen from Fig. S1 where the intensity loss is shown for propagation distances of L = 4.9 cm. Thus,
Fresnel reflection constitutes a negligible source of propagation loss, and any coupling between forward and backward
propagating modes can be safely ignored.
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FIG. S1. Transmission as a function of break length for isolated, straight waveguides. Experimental results are
shown as red crosses, and simulation results are shown a blue circles. The total length of the system is L = 4.9 cm. For the
purposes of break placement, the straight waveguides are assumed to have a fictitious helix pitch of Z = 1 cm, and 16 breaks
are placed per helix pitch, each with length dbreak.

V. CONFIRMATION OF CORRECT SPATIAL DISTRIBUTION OF LOSS

In addition to the experimental observations of Fermi arc surface states and lack of conical diffraction presented
in the main text, a final confirmation that the broken helical waveguide array possesses a WER can be seen in
the distribution of the output power of the device between the two sublattices of the system. One consequence of
adding spatially inhomogeneous loss to a system is that the system’s eigenmodes localize to either the lossless or lossy
regions. (In the limit of very strong loss, this localization can be proven to be perfect [9, 10].) The localization of the
eigenmodes is reflected in their respective eigenvalues, which either correspond to nearly lossless or strongly attenuated
propagation. This effect can be viewed as the result of an impedance mismatch between the different sublattices of
the system due to the spatially inhomogeneous loss, and can lead to loss-induced transmission in waveguides [11]
and reverse pump dependence in lasers [12–14]. In contrast, the eigenmodes of a Hermitian system whose elements
all have the same impedance, i.e. index of refraction, are evenly distributed over the entire system. Thus, for light
injected into a Hermitian bipartite waveguide array whose constituent elements all have the same index of refraction,
the output power should be evenly distributed over the two sublattices of the system, yielding an output power ratio
PA/PB ≈ 1, where A and B denote the two sublattices of the system. However, as loss is added to the B sublattice,
the propagating modes with nearly lossless transmission are localized to the lossless waveguides, instead resulting in
PA/PB ≫ 1. This analysis is confirmed in both simulation and experiment in Fig. S2, the Hermitian system has an
output power ratio near 1, but as the break length is increased this quantity begins to diverge. This final experiment
should be viewed as direct confirmation that we have achieved the non-trivial non-Hermitian term iτ σ̂z in Eq. (1) of
the main text which results in the formation of a WER.

VI. EFFECT OF CHANGING THE INDEX OF ONE SUBLATTICE

As discussed in the main text, and above in Sec. I, one of the consequences of adding breaks to one sublattice of the
helical waveguides which comprise the bipartite system is that light propagating through a break accumulates phase
at a slower rate than light propagating through the corresponding region in the unbroken waveguide. Moreover, as
shown in Eq. (S22), this can result in a change in the frequency, δω, where the topological transition occurs through
the term ∆ετ . For our system, this effective shift in the index of refraction of one of the sublattice waveguides is a
non-negligible effect. For example, noting that there are 16 equally long breaks per helix pitch, if dbreak = 60µm,
the total length of the broken region per helix pitch is 960µm, which is 9.6% (Z = 1 cm). Thus, it is important to
distinguish which features of this system are a consequence of this effective detuning of the indices of refraction of the
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FIG. S2. Output power ratio as a signature of a WER. (a)-(b) Simulations and experimental observations of the
sublattice power ratio, PA/PB , for light injected into the centre of the helical waveguide array as a function of the injected
wavelength for six different break lengths dbreak = 0, 20, 40, 50, 60, 70µm. The Hermitian system is shown in cyan, and redder
colours indicate longer break lengths. Wavelengths where simulations predict either a Weyl point or WER are indicated in red
and orange respectively.

two sublattices, a completely Hermitian phenomenon, and which features are a consequence of the loss added to the
system through the inclusion of these waveguide breaks.

To disentangle the effects of the added loss from those of the index detuning, here we study systems which have
the two sublattice indices detuned, but no added breaks. For example, a lossy waveguide with dbreak = 60µm and
∆nB = 2.6 · 10−3 has an effective index of ∆nB = 2.35 · 10−3 if the waveguide were unbroken, but possessing an index
equal to the average index of the broken waveguide. In Fig. S3(a), we show that the wavelength of the Weyl point
decreases in detuned unbroken Hermitian waveguide arrays with ∆nB < ∆nA = 2.6 · 10−3. As such, we reiterate here
that the change in the wavelength of the topological transition observed in Fig. 3 of the main text is a consequence
of the detuning of the indices of refraction of the two waveguides due to the added breaks in one sublattice, and not
due to the loss added to the system through the breaks.
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FIG. S3. Properties of detuned, Hermitian helical waveguides. (a) Wavelength of the Weyl point as the index detuning
between the two sublattices is decreased found using full wave simulations. The values of ∆nB chosen correspond to the effective
indices of refraction for dbreak = 0, 10, 20, 30, 40, 50, 60, 70µm. (b) Full wave simulations of the output power ratio between the
two sublattices of the detuned Hermitian system with ∆nB = 2.6 · 10−3, 2.52 · 10−3, 2.43 · 10−3, 2.35 · 10−3, 2.31 · 10−3 (cyan to
magenta), and ∆nA = 2.6 · 10−3. The chosen detunings correspond to dbreak = 0, 20, 40, 50, 60, 70 µm.

However, the purely Hermitian change in the location of the topological transition is inconsistent with the later
results in the main text. In particular, the output power ratio, PA/PB remains near unity for these detuned Hermitian
systems, as shown in Fig. S3b, which is in sharp contrast to what is observed for the non-Hermitian systems in Fig.
S2b. As such, one can conclude that while the wavelength of the topological transition is mostly determined by the
effective index detuning caused by the added breaks, the added loss to one sublattice of the system has caused this
detuning to realize a Weyl exceptional ring, and not a Weyl point.



VII. ADDING HOMOGENEOUS LOSS: BREAKS ADDED TO BOTH SUBLATTICES

In the previous section, we demonstrated that simply considering the Hermitian effects of adding breaks to a single
sublattice of our system could not explain our observed results. Here, we consider the opposite case in which equal
length breaks are added to both sublattices of the system. As such, the effective indices of both waveguides are the
same, as is the added loss. This amounts to a ‘trivial’ addition of non-Hermiticity to the system, in the form of iτ Î
within Eq. (S9) rather than iτ σ̂1, and thus should not result in the formation of a Weyl exceptional ring. To confirm
this, we show simulations of both the transverse radial propagation, 〈ψ|r⊥|ψ〉, and the output power ratio, PA/PB,
in Fig. S4, for waveguide arrays with breaks added to both sublattices. This approximately doubles the loss per unit
cell, so we halve the lengths of the breaks in these systems relative to those studied in the main text with breaks
added to only a single sublattice.
As can be seen in Fig. S4(a), this uniform addition of loss to the system preserves the Weyl point of the system,

as exhibited by a peak in the transverse radial propagation. The slight shift in the Weyl point’s wavelength is due to
the slight shift in the effective indices of the waveguides of the system, which changes the effective coupling constant
between the waveguides, but which remain in tune as breaks have been added to both waveguides. Moreover, as loss
has been added to both sublattices, the output power remains equal in both sublattices for all of the simulated break
lengths, as shown in Fig. S4(b). These simulations provide further proof that adding breaks to only one sublattice of
the helical waveguide array results in the formation of a Weyl exceptional ring.
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FIG. S4. Non-Hermitian waveguide arrays with breaks added to both sublattices. (a) Full wave simulations of
transverse radial propagation and (b) output power ratio as a function of the wavelength for dbreak = 0, 10, 20, 25, 30, 35 µm.
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