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In recent years, topological phenomena have been extensively 
explored in both photonics and condensed-matter physics, as 
these systems can possess exotic states that realize backscattering-

immune transport, even in the presence of disorder1–12. In three 
dimensions, perhaps the simplest class of topologically non-triv-
ial systems are Weyl materials13–28, which possess a set of isolated 
degeneracies in their band structure that are sources or sinks of 
Berry curvature29 and are connected by Fermi arc surface states. As 
these Weyl points possess a topological charge, they must be created 
or annihilated in sets of at least two, such that the total charge in 
the Brillouin zone remains zero. Thus, any isolated Weyl points in a 
system are protected against Hermitian perturbations that preserve 
translational symmetry, which can only change their location in the 
Brillouin zone. Unlike solid-state systems, an important feature of 
photonic systems is their ability to break Hermiticity through mate-
rial absorption or gain, as well as radiative outcoupling. This enables 
photonics to realize phenomena exclusive to non-Hermitian sys-
tems, such as exceptional points, a class of degeneracies where two 
or more eigenvalues and their associated eigenvectors coalesce, and 
the system possesses a non-trivial Jordan block form30. Exceptional 
points are commonly found in parity–time symmetric systems31–33 
and are associated with a wide range of unusual behaviours in topo-
logically trivial optical systems, such as unconventional reflection 
and transmission34,35, promoting single-mode operation in lasers36,37, 
novel methods of controlling polarization38–40 and enhancing the 
Purcell factor of resonant cavities41,42.

Despite these successes, only in the last few years have the conse-
quences of non-Hermiticity been explored in topological materials 
such as topological insulators and Weyl semimetals. There is pres-
ently an ongoing theoretical effort to fully classify and characterize 
such non-Hermitian topological materials, which have been found to 
exhibit a wide range of unexpected behaviours including anomalous 
topological winding numbers and breakdowns of bulk-edge corre-
spondence43–51. In this context, non-Hermitian Weyl media can serve 
an exemplary role in understanding the intersection between non-
Hermitian and topological materials, because they exhibit a set of 
distinctive behaviours that have been theoretically predicted52,53, but 
have not been previously demonstrated experimentally. In particu-
lar, and perhaps surprisingly, adding a non-Hermitian perturbation 

to a Weyl medium is predicted to expand the Weyl point into a ring 
of exceptional points—a Weyl exceptional ring (WER)—on which 
the Berry charge remains real, quantized and equal to the charge of 
the original Weyl point. As such, WERs are the first known non-
point source of Berry flux and cannot be interpreted as magnetic 
monopoles of the Berry curvature as is standard for Weyl points52,53. 
Because of this, WERs allow for a non-Hermitian topological transi-
tion: if the added loss is sufficiently strong, two WERs with opposite 
charge can merge, annihilating their topological charge to become a 
single exceptional contour53.

Here, we experimentally realize a WER in a three-dimensional 
(3D) photonic lattice composed of evanescently coupled single-
mode helical waveguides, fabricated using femtosecond direct laser 
writing54. To confirm that our system possesses a Berry charge, we 
first show that our waveguide array exhibits a topological transition 
beyond which we observe protected surface states. We then show 
that this transition is an exemplar of a new class of topological tran-
sitions, where the upper and lower bands meet at a ring, rather than 
a point, by observing the lack of conical diffraction at this transition 
when the system is non-Hermitian. Taken together, these measure-
ments demonstrate that we have realized a ring-like object in the 
reciprocal space of our system with quantized Berry charge—that 
is, a WER.

Our experimental system consists of a bipartite array of helical 
waveguides with the same orientation, which breaks the parity sym-
metry of the system and allows for the formation of Weyl points or 
WERs. To remove the Hermiticity of this system, breaks are inserted 
into one of the two sublattices by periodically skipping the writing 
of a specified length of these waveguides, as shown in Fig. 1a–c 
(see Methods). Within these breaks the confining potential for the 
light is removed, resulting in strong coupling to radiating modes 
and yielding a tunable mechanism for adding loss by increasing 
the length of these breaks (Supplementary Fig. 1). Thus, by start-
ing with the paraxial wave equation for weakly confined waveguide 
modes, we show that the 3D band structure of this system realizes 
the 2 × 2 non-Hermitian Weyl exceptional ring Hamiltonian:
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Weyl points are isolated degeneracies in reciprocal space that are monopoles of the Berry curvature. This topological charge 
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Berry charge in a topological material.
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whose eigenvalues, δω, are the band frequencies relative to the 
frequency of the underlying Weyl point for the wavevector com-
ponents perpendicular, δk⊥ = (δkx, δky), and parallel, δkz, to the 
waveguide axis. The details of this derivation are included in the 
Supplementary Information. Here, τ characterizes the strength of 
the loss added to one of the two sublattices of waveguides, v⊥ and 
vz are the group velocities in the transverse and parallel directions, 
respectively, σx̂ y z, ,  are the Pauli matrices, Î is the identity and b is a 
dimensionless parameter, with |b| ≪ 1.

In the Hermitian limit, τ = 0, this helical waveguide array pos-
sesses a type-II Weyl point, whose dispersion is strongly anisotropic 
because both bands represent modes travelling in the same direc-
tion along the z axis27. Here we consider the helical waveguide array 
as a 3D photonic crystal, rather than a 2D system in the paraxial 
limit, where a Weyl point exists in the δω(kx, ky, kz) band structure. 
Although there is a complementary pair of bands representing 
modes travelling in the opposite direction at the same frequency, 
the weak backscattering in this system implies negligible coupling 
between the forward and backward propagating modes, allowing 
either pair of bands to be considered independent of the other. 
The distinctive conical band structure of this system at the Weyl 
point, δω = 0, is shown in Fig. 1d,e, yielding a constant transverse 
group velocity at this frequency across nearly the entire transverse 
Brillouin zone.

However, as loss is added to one sublattice in the bipartite wave-
guide array by increasing the break lengths, |τ| > 0, the two bands 
begin to merge together starting at the Weyl point, and proceeding 
radially outward in the transverse direction, as shown in Fig. 1f,h. 
This process yields a 1D closed contour of exceptional points in 
the δkz = 0 plane where the upper and lower bands merge together 
and on which the Berry charge of the underlying Weyl point is 
exactly preserved, forming a WER52,53. Within this circular region 
in δk⊥, and for a range of δkz near that of the WER, the real part 
of the bands are nearly flat, resulting in an extremely small trans-
verse intensity transport velocity, which is the non-Hermitian  

generalization of the group velocity we observe in waveguide 
arrays55. These flat bands can be seen by viewing the band struc-
ture in the δkx − δkz plane, shown in Fig. 1g,i for δky = 0, between 
the two exceptional points where this plane intersects the WER.

Although the spatial distribution of loss in this system resembles 
that of parity–time symmetric systems33–35, the presence of the heli-
ces also breaks the parity symmetry of the system, and overall, the 
system is not parity–time symmetric. Furthermore, to form a WER, 
it is critical that the loss is only added to a single sublattice of the 
system, which realizes the non-trivial non-Hermitian term τσ ̂ivz z in 
equation (1). Adding an equal amount of loss to both sublattices 
would represent a trivial non-Hermitian perturbation of the form 

τiv Îz , which preserves the Weyl point, as shown in the Supplementary 
Information. Finally, as the refractive index within the waveguides 
only differs from the surrounding glass by Δn = 2.6 × 10−3, Fresnel 
reflection at the waveguide break interfaces can be ignored, as also 
discussed in the Supplementary Information.

One important consequence of the presence of quantized sources 
or sinks of Berry flux in the spectrum of a system is the appearance 
of Fermi arc surface states at the spatial boundaries of the device. In 
a Hermitian system, these surface states form open arcs connecting 
the projections of pairs of Weyl points with opposite Berry charge 
in the surface Brillouin zone, as shown in Fig. 2a. When the system 
becomes non-Hermitian, the Fermi arc states persist, but now con-
nect the projection of the pair of WERs that formed from the under-
lying Weyl points, as shown in Fig. 2b.

Given the large disparity between their transverse and longitudi-
nal lattice constants, helical waveguide arrays are typically analysed 
in the paraxial limit to separate these two scales56. Then, Maxwell’s 
equations describing light diffracting through the waveguide array 
can be approximated as a 2D Schrödinger-like equation, in which 
z acts as a temporal direction, and the potential confining the light 
is proportional to the index of refraction of the waveguides relative 
to the surrounding index, Δn(x, y, z). Using this paraxial approxi-
mation, the operating frequency becomes an adjustable parameter 
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Fig. 1 | Helical waveguide array and corresponding band structure supporting a WER. a, Schematic of the bipartite helical waveguide array in which 
all of the helices have the same orientation, but the rotations of the two sublattices are a half-cycle out of phase and breaks have been added to one of 
the sublattices. In this system R = 4 μm, =a 29 2  μm, Z = 1 cm and 16 evenly spaced breaks with length dbreak are added per helix period Z. b, Greyscale 
microscope image of the output facet of one of the helical waveguide arrays. c, Microscope image showing breaks added to the top layer of a helical 
waveguide array. Within the breaks, out-of-focus waveguides deeper in the array can be seen. d,e, Band structures in the δkx–δky and δkx–δkz planes with 
δky = 0 and δkz = 0, respectively, for a Hermitian waveguide array, τ = 0, showing a type-II Weyl point, marked in red. f,g, Similar to d and e, except with 
breaks added to the waveguides, τ = 0.2, so that the band structure possesses a WER in the δkx–δky plane that is intersected twice by the δkx–δkz plane, 
exhibiting two exceptional points, marked in orange. h,i, Imaginary part of the band structure for the same systems considered in f and g. Surface states 
are shown schematically in green in e, g and i for the states localized to the surface with unbroken waveguides.
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while the longitudinal wavevector component, kz, acts as an effec-
tive ‘energy’, and thus solutions to these equations yield isofrequency 
surfaces of the full 3D band structure. For non-Hermitian paraxial 
systems, the amplification or attenuation of a band is instead found 
as the imaginary part of kz, yielding gain or loss per unit length in z.  
As our system contains a Weyl point or WER at δω = 0, different 
choices of frequency can result in topologically distinct 2D band 
structures of the paraxial equation. In particular, isofrequency sur-
faces for δω > 0 are conventional insulators (in the sense that they 
have a topologically trivial bandgap), while those for δω < 0 are 
topological insulators.

To experimentally demonstrate that this helical waveguide array 
possesses a WER, we observe the real-space behaviours associated 
with its presence in the system’s band structure. First, to show that 
our system possesses a Berry charge, we demonstrate that our sys-
tem exhibits a topological transition by observing the appearance 
of Fermi arc surface states for increasing dbreak. Second, to show  
that this Berry charge is distributed along a ring rather than con-
densed at a point, we demonstrate that a signal injected into the 
centre of the waveguide array at the topological transition experi-
ences progressively more localization for increasing dbreak due to the 
expansion of the radius of the flat band region within the WER. A 
final check that our system correctly realizes the τσ ̂ivz zterm in equa-
tion (1) is presented in the Supplementary Information, where we 
observe the ratio of the output power carried in the two sublattices 
of the system to demonstrate the collapse of the eigenmodes into 
different sublattices due to the non-uniform distribution of the loss.

The observation of a topological transition in this helical wave-
guide array relies on an additional consequence of creating loss in 

the system by adding breaks to the waveguides: light propagating 
within a break in the lossy waveguide accumulates phase at a slower 
rate than light propagating in the lossless waveguide due to the lower 
index of refraction in these breaks relative to the index of an unbro-
ken waveguide. As we show in the Supplementary Information, this 
difference in phase accumulation adds an additional term propor-
tional to σẑ to equation (1) that decreases the wavelength where the 
topological transition due to the Weyl point or WER occurs. Thus, 
by fixing the operating wavelength and increasing the break length, 
the chosen isofrequency surface can be driven through a topological 
transition due to the motion of the WER. To observe this topologi-
cal transition, we inject light into a single waveguide at the boundary 
of the lattice and look for the appearance of Fermi arc surface states 
at the output facet of the system. If a surface state is present, light 
should remain relatively confined to the system’s surface, otherwise 
it will diffract into the bulk. The wavelength is fixed at λ = 1,580 nm, 
which is less than the wavelength of the Weyl point in the Hermitian 
system when dbreak = 0 μm, at λWP = 1,609 nm. Thus, at this wave-
length the injected signal in the Hermitian system simply diffracts, 
as there is no Fermi arc state at the operating wavelength, shown 
in Fig. 3a. However, as dbreak is increased as shown in Fig. 3b,c, the 
wavelength of the topological transition at the WER decreases, lead-
ing to the appearance of a Fermi arc surface state for dbreak = 60 μm, 
as shown in Fig. 3d. Simulations confirm the appearance of Fermi 
arc surface states as shown in Fig. 3e–l. At dbreak = 60 μm, simulations 
predict that the WER is at λWER = 1,480 nm. Thus, our system real-
izes a topological transition beyond which protected surface states 
appear, demonstrating that the system possesses a Berry charge.

To demonstrate that the topological transition in the previ-
ous experiment is due to a WER and not a Weyl point, we stud-
ied the consequences of opening a flat band region at the centre 
of the Brillouin zone. As the underlying Hermitian system with 
dbreak = 0 μm possesses a type-II Weyl point, its isofrequency surface 
at this point is conical, leading to a large transverse group veloc-
ity, as shown in Fig. 4e. However, for either shorter or longer wave-
lengths the isofrequency surfaces are hyperbolic. Thus, when light 
is injected into the centre of the structure for propagation distances 
in z short enough that the beam does not reflect off the boundary 
of the system, the Weyl point is seen as a peak in the transverse 
radial expectation value, 〈ψ|r⊥|ψ〉/a. In the cyan curve of Fig. 4a,b, 
which corresponds to the Hermitian waveguide array, the peak of 
the experimentally observed transverse radial expectation value is 
in close agreement with the numerically predicted location of the 
Weyl point at λ = 1,609 nm. However, as the waveguide break length 
is increased, shifting the location of the topological transition to 
shorter wavelengths, the peak in the transverse radial expectation 
value disappears and 〈ψ|r⊥|ψ〉/a is reduced over the entire measured 
wavelength range when compared with the lossless system, indicat-
ing that there is no significant difference in this quantity between 
wavelengths where the topological transition occurs and wave-
lengths with hyperbolic dispersion, shown in increasingly more 
magenta colours in Fig. 4a,b. The output intensity in the waveguide 
array along with simulated isofrequency surfaces at the Weyl point 
of the Hermitian system and at the WER when dbreak = 60 μm are 
shown in Fig. 4c–h. This observation is consistent with the forma-
tion of a WER in the helical waveguide array, and inconsistent with 
the existence of an ordinary Weyl point, as a WER flattens the cen-
tre of the isofrequency surface in the Brillouin zone and decreases 
the transverse intensity transport velocity. Thus, this experiment 
demonstrates that the system experiences a topological transition 
without a conventional band touching at a Weyl point, and as such 
is unlike any previously observed topological transition.

In conclusion, we have observed a helical waveguide array sup-
porting a WER in the optical regime by adding breaks to half of 
the waveguides, breaking the Hermiticity of the system. As we have 
shown, non-Hermitian perturbations to a Weyl material yield a 
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Fig. 2 | Surface states connecting the projection of the Berry charges. 
a, Schematic of the Fermi arc surface states (green) connecting the 
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waveguide array. Berry flux is shown in purple. b, Similar to a except with 
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fundamentally new class of topological object, WERs. This experi-
ment not only provides the first observation of a distributed source 
of Berry flux, but also directly demonstrates that Berry charge and 
Fermi arc surface states are preserved in the presence of a non-
Hermitian perturbation to the system, even as the Weyl point itself 
transforms into a WER. This experimental demonstration of ana-
lytic predictions of the properties of non-Hermitian Weyl materials 
provides strong motivation for additional theoretical and experi-
mental studies, in particular those exploring the complex interplay 
between band topology and the non-trivial topological structure 
associated with exceptional points, as well as the ramifications of 
distributed sources of Berry flux. The fact that WERs can merge 
to realize a topological phase transition dependent only on the 
strength of the non-Hermiticity allows for a new route to obtaining 
tunable photonic topological materials53. Likewise, as point degen-
eracies, Weyl points are the most natural places to nucleate WERs 
in 3D photonic crystals and explore the novel interplay between 
exceptional point physics and Purcell enhancement41,42.
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Methods
The helical waveguide arrays were written, using a Ti:sapphire laser and amplifier 
system (Coherent:RegA 9000; repetition rate of 250 kHz, pulse duration of 270 fs 
and pulse energy of 880 nJ), into Corning Eagle XG borosilicate glass with an index 
of refraction of n0 = 1.473. The size and shape of the focal volume within the glass 
chip of the laser writing beam were specified by first sending the laser through a 
beam-shaping cylindrical telescope and then focusing it using a ×50, aberration-
corrected microscope objective (NA = 0.55). The waveguides were then fabricated 
by translating the glass chip through the laser’s focal volume using a high-precision 
three-axis Aerotech motion stage (model ABL20020). The breaks in the waveguide 
were created by turning off the laser writing beam using an acousto-optical 
modulator while the motion stage continued to move, and then turning the beam 
back on after the desired distance was reached.

To perform the experiments reported in the main text, light was injected into 
the helical waveguide arrays at the input facet of the system by butt-coupling a 

single-mode optical fibre to a single waveguide, which in turn was coupled to  
the full waveguide array. A tunable, 1,450–1,650 nm, mid-infrared diode laser 
(Agilent 8164B) was used as the input light source. After propagating through  
the array, light from the output facet of the glass chip was collected using a  
0.2 NA microscope objective lens and observed using a near-infrared InGaAs 
camera (ICI systems).
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